81 resultados para Serine Endopeptidases
Resumo:
Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extracellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Neuropsin (kallikrein 8, ELKS) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only express
Resumo:
Kallikrein 8 (KLK8) is a serine protease functioning in the central nervous system, and essential in many aspects of neuronal activities. Sequence comparison and gene expression analysis among diverse primate species identified a human-specific splice for
Resumo:
目的:从金环蛇蛇毒中分离纯化名为bungaruskunin 1的一种新型胰蛋白酶抑制剂,并从其毒腺的cDNA文库中克隆出该胰蛋白酶抑制剂的cDNA全序列.方法:通过Sephadex G-50, CM-Sephadex C-25, HPLC, RP-HPLC (C4 column)方法分离纯化bungaruskunin 1.样品的丝氨酸蛋白酶抑制剂活性则是在室温条件下50mmol·L-1 Tris-HCl, pH 7.8的缓冲液中通过对显色底物的水解抑制作用来检测的.金环蛇毒腺RNA用TRIZOL提取,并用SMARTM PCR cDNA synthesis kit (Clontech)建成cDNA文库.根据其信号肽的保守区域合成引物从该文库中扩增出bungaruskunin 1的cDNA全序列,进行胶回收,酶连到pMDl8-T载体中转化测序.结果:bungaruskunin 1的前体由83个氨基酸组成,其中信号肽含有24个氨基酸,成熟肽即:bungaruskunin 1合有59个氨基酸.bungaruskunin 1的cDNA序列与从红腹伊澳蛇Pseudechis porphyriacus中分离纯化得到的丝氨酸蛋白酶抑制剂blackelin的cDNA序列的相似性高达64%.bungaruskunin 1是一种含有保守Kunitz端的Kuntiz蛋白酶抑制剂家族的一员,从而能够抑制蛋白酶和弹性酶的活性.在cDNA文库中,我们同时还筛选到了2种新的β-bungarotoxin B链的序列.结论:这些发现很好地证明了蛇中Kunitz/BPTI胰蛋白酶抑制剂和毒性神经的家族可能起源于共同的祖先.
Resumo:
A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.
Resumo:
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mel. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.
Resumo:
The specific plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) is a serine proteinase presenting 23% sequence identity with the proteinase domain of tissue type plasminogen activator, and 63% with batroxobin, a fibrinogen clotting enzyme from Bothrops atrox venom that does not activate plasminogen. TSV-PA contains six disulfide bonds and has been successfully overexpressed in Escherichia coli (Zhang, Y., Wisner, A., Xiong, Y. L,, and Bon, C, (1995) J. Biol. Chem. 270, 10246-10255), To identify the functional domains of TSV-PA, we focused on three short peptide fragments of TSV-PA showing important sequence differences with batroxobin and other venom serine proteinases. Molecular modeling shows that these sequences are located in surface loop regions, one of which is next to the catalytic site, When these sequences were replaced in TSV-PA by the equivalent batroxobin residues none generated either fibrinogen-clotting or direct fibrinogenolytic activity, Two of the replacements had little effect in general and are not critical to the specificity of TSV-PA for plasminogen. Nevertheless, the third replacement, produced by the conversion of the sequence DDE 96a-98 to NVI, significantly increased the K-m for some tripeptide chromogenic substrates and resulted in undetectable plasminogen activation, indicating the key role that the sequence plays in substrate recognition by the enzyme.
Resumo:
Rong Gao, Yun Zhang, Qing-Xiong Meng, Wen-Hui Lee, Dong-Sheng Li, Yu-liang Xiong and Wan-Yu Wang. Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejneger ) venom. Toxicon 36, 457-467, 1998.-From the venom of Chinese green tree viper (Trimeresurus stejnegeri), three distinct fibrinogenolytic enzymes: stejnefibrase-l, stejnefibrase-2 and stejnefibrase-3, were purified by gel filtration, ion-exchange chromatography and reverse-phase high-performance chromatograghy (HPLC). SDS-PAGE analysis of those three enzymes showed that they consisted of a single polypeptide chain with mel. wt of -50 000, 31 000 and 32 000, respectively. Like TSV-PA (a specific plasminogen activator) and stejnobin (a fibrinogen-clotting enzyme) purified from the same venom, stejnfibrase-1, -2 and -3 were able to hydrolyze several chromogenic substrate. On the other hand, different from TSV-PA. and stejnobin, stejnefibrase-l, -2 and -3 did not activate plasminogen and did not possess fibrinogen-clotting activity. The three purified enzymes directly degraded fibrinogen to small fragments and rendered it unclottable by thrombin. Stejnefibrase-2 degraded preferentially BE-chain while stejnefibrase-l and -3 cleaved concomitantly Ax and B beta-chains of fibrinogen. None of these proteases degraded the gamma-chain of fibrinogen. When correlated with the loss of clottability of fibrinogen, the most active enzyme was stejnefibrase-l. The activities of the three enzymes were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB), indicating that like TSV-PA and stejnobin, they are venom serine proteases. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Trimeresurus stejnegeri venom, which contains TSV-PA (a specific plasminogen activator sharing 60-70% sequence homology with venom fibrinogen-clotting enzymes), also possesses fibrinogen-clotting activity in vitro. A fibrinogen-clotting enzyme (stejnobin) has been purified to homogeneity by gel filtration and ion-exchange chromatography on a Mono-Q column. It is a single-chain glycoprotein with a mol. wt of 44,000. The NH2-terminal amino acid sequence of stejnobin shows great homology with venom fibrinogen-clotting enzymes and TSV-PA. Like TSV-PA, stejnobin was able to hydrolyse several chromogenic substrates. Comparative study of substrate specificities of stejnobin and other venom proteases purified in our laboratory was carried out on five chromogenic substrates. Stejnobin clotted human fibrinogen with a specific activity of 122 NIH thrombin-equivalent units/mg protein. However, stejnobin did not act on other blood coagulation factors, such as factor X, prothrombin and plasminogen. Diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride inhibited its activity, whereas ethylenediamine tetracetic acid had no effect on it, indicating that it is a serine protease. Although stejnobin showed strong immunological cross-reaction with polyclonal antibodies raised against TSV-PA, it was interesting to observe that, unlike the case of TSV-PA, these antibodies did not inhibit the amidolytic and fibrinogen-clotting activities of stejnobin. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The action of Pallas' viper (Agkistrodon halys pallas) venom on blood coagulation was examined in vitro and a strong anticoagulant effect was observed. This action was abolished after treatment with a specific inhibitor of phospholipase A(2) activity (p-bromophenacyl bromide), revealing a procoagulant action in low concentrations of treated venom (around 1 mu g/ml). The effect of the venom an haemostasis was further characterized by measuring its ability to activate purified blood coagulation factors. It is concluded that A. halys pallas venom contains prothrombin activation activity. A prothrombin activator (aharin) was purified from the venom by Sephadex G-75 gel filtration and ion-exchange chromatography on a Mono-Q column. It consisted of a single polypeptide chain, with a mol. wt of 63,000. Purified aharin possessed no amidolytic activity on chromogenic substrates. It did not act on other blood coagulation factors, such as factor X and plasminogen, nor did it cleave or clot purified fibrinogen. The prothrombin activation activity of aharin was readily inhibited by ethylenediamine tetracetic acid (a metal chelator), but specific serine protease inhibitors such as diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride had no effect on it. These observations suggest that, like those prothrombin activators from Echis carinatus and Bothrops atrox venoms, the prothrombin activator from A. halys pallas venom is a metalloproteinase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel peptide inhibitor (OGTI) of serine protease with a molecular weight of 1949.8, was purified from the skin secretion of the frog, Odorrana grahami. Of the tested serine proteases, OGTI only inhibited the hydrolysis activity of trypsin on synthetic chromogenic substrate. This precursor deduced from the cDNA sequence is composed of 70 amino acid residues. The mature OGTI contains 17 amino acid residues including a six-residue loop disulfided by two half-cysteines (AVNIPFKVHFRCKAAFC). In addition to its unique six-residue loop, the overall structure and precursor of OGTI are different from those of other serine protease inhibitors. It is also one of the smallest serine protease inhibitors ever found. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Horseflies are economically important blood-feeding arthropods and also a nuisance for humans and vectors for filariasis. They rely heavily on the pharmacological properties of their saliva to get a blood meal and suppress immune reactions of hosts. Little information is available on antihemostatic substances in horsefly salivary glands; especially no horsefly immune suppressants have been reported. By proteomics or peptidomics and coupling transcriptome analysis with pharmacological testing, several families of proteins or peptides, which act mainly on the hemostatic system or immune system of the host, were identified and characterized from 30,000 pairs salivary glands of the horsefly Tabanus yao (Diptera, Tabanidae). They are: (i) a novel family of inhibitors of platelet aggregation including two members, which possibly inhibit platelet aggregation by a novel mechanism and act on platelet membrane, (ii) a novel family of immunosuppressant peptides including 12 members, which can inhibit interferon-gamma production and increase interleukin-10 secretion, (iii) a serine protease inhibitor with 56 amino acid residues containing anticoagulant activity, (iv) a serine protease with anticoagulant activity, (v) a protease with fibrinogenolytic activity, (vi) three families of antimicrobial peptides including six members, (vii) a hyaluronidase, (viii) a vasodilator peptide, which is an isoform of vasotab identified from Hybomitra bimaculata, and interestingly (ix) two metallothioneins, which are the first metallothioneins reported from invertebrate salivary glands. The current work will facilitate the understanding of the molecular mechanisms of the ectoparasite-host relationship and help in identifying novel vaccine targets and novel leading pharmacological compounds.
Resumo:
From the venom of Trimeresurus jerdonii, a distinct thrombin-like enzyme, called jerdonobin. was purified by DEAF A-25 ion-exchange chromatography, Sephadex G-75 gel filtration, and fast protein liquid chromatography (FPLC). SDS-PAGE analysis of this enzyme shows that it consists of a single polypeptide chain with a molecular weight of 38,000. The NH2-terminal amino acid sequence of jerdonobin has great homology with venom thrombin-like enzymes documented. Jerdonobin is able to hydrolyze several chromogenic substrates. The enzyme directly clots fibrinogen with an activity of 217 NIH units/mg, The fibrinopeptides released, identified by HPLC consisted of fibrinopeptide A and a small amount of fibrinopepide B. The activities of the enzyme were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB). However, metal chelator (EDTA) had no effect on it. indicating it is venom serine protease. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Recent studies have proposed that the serine protease inhibitor E2 (SERPINE2) was a novel susceptibility gene for chronic obstructive pulmonary disease (COPD) in Caucasians. However, this issue still remained controversial. Additional evidence
Resumo:
In this paper, we present the results of purification and characterization of an arginine/lysine amidase from the venom of Ophiophagus hannah (OhS1). It was purified by Sephadex G-75 gel filtration and ion-exchange chromatography on DEAE-Sepharose CL-6B. It is a protein of about 43,000, consisting of a single polypeptide chain. It is a minor component in the venom. The purified enzyme was capable of hydrolysing several tripeptidyl-p-nitroanilide substrates having either arginine or lysine as the C-terminal residue. We studied the kinetic parameters of OhS1 on six these chromogenic substrates. OhS1 did not clot fibrinogen. Electrophoresis of fibrinogen degraded with OhS1 revealed the disappearance of the alpha- and beta-chains and the appearance of lower mel. wt fragments. OhS1 had no hemorrhagic activity. It did not hydrolyse casein, nor did it act on blood coagulation factor X, prothrombin and plasminogen. The activity of OhS1 was completely inhibited by NPGB, PMSF, DFP, benzamidine and soybean trypsin inhibitor, suggesting it is a serine protease. Metal chelator (EDTA) had no effect on it.