55 resultados para Ricostruzione di immagine, imaging a microonde.
Resumo:
A two-step phase-retrieval method, based on Fourier-transform ghost imaging, was demonstrated. For the complex objects, the phase-retrieval process was divided into two steps: first got the complex object's amplitude from the Fourier-transform patterns of the squared object function, then combining with the Fourier-transform patterns of the object function to get the phase. The theoretical basis of this technique is outlined, and the experimental results are presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
In this paper, we propose a novel three-dimensional imaging method by which the object is captured by a coded cameras array (CCA) and computationally reconstructed as a series of longitudinal layered surface images of the object. The distribution of cameras in array, named code pattern, is crucial for reconstructed images fidelity when the correlation decoding is used. We use DIRECT global optimization algorithm to design the code patterns that possess proper imaging property. We have conducted primary experiments to verify and test the performance of the proposed method with a simple discontinuous object and a small-scale CCA including nine cameras. After certain procedures such as capturing, photograph integrating, computational reconstructing and filtering, etc., we obtain reconstructed longitudinal layered surface images of the object with higher signal-to-noise ratio. The results of experiments show that the proposed method is feasible. It is a promising method to be used in fields such as remote sensing, machine vision, etc. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
Immersion lithography has been considered as the mainstream technology to extend the feasibility of optical lithography to further technology nodes. Using proper polarized illumination in an immersion lithographic tool is a powerful means to enhance the image quality and process capability for high numerical aperture (NA) imaging. In this paper, the impact of polarized illumination on high NA imaging in ArF immersion lithography for 45 nm dense lines and semi-dense lines is studied by PROLITH simulation. The normalized image log slope (NILS) and exposure defocus (ED) window are simulated under various polarized illumination modes, and the impact of polarized illumination on image quality and process latitude is analyzed. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
In contrast to previous two-dimensional coated photonic crystals, in this paper we propose a left-handed one that is made of dielectric tubes arranged in a close-packed hexagonal lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. Negative refraction and its resulting focusing are investigated by dispersion characteristic analysis and numerical simulation of the field pattern. With proper modification at the interface, the image is improved. With better isotropy than that with noncircular rods, planoconcave lenses made by dielectric tubes focus a Gaussian beam exactly at R//n - 1/.
Resumo:
As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.