320 resultados para RAY PHOTOEMISSION SPECTROSCOPY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox potential, surface composition and oxygen species of a series of complex oxides LaMn1-xFexO3 (x=0-1) having perovskite structure (ABO(3)) have been investigated by means of XI'S. The variation of binding energies referring to Mn2p and Fe 2p under different treatment offerred an obvious evidence of redox between Mn and Fe, which could be expressed as Mn4+ + Fe(3-delta)+ Mn(4-delta)+ Fe3+ Feat Through computer fit three kinds of adsorbed oxygen species (O-I, O-II, O-III) have been evaluated based on the XPS spectra of O1s. From the variation of contents of different oxygen species, it could be concluded that. the redox occuring in the surface might be related with the adsorbed oxygen species O-I and O-II, furthermore the possibility of transfer of electron between adsorption site and oxygen was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt-doped ZnO (Zn1-xCoxO) thin films were fabricated by reactive magnetron cosputtering. The processing conditions were carefully designed to avoid the occurrence of Co precipitations. The films are c-axis oriented, and the solubility limit of Co in ZnO is less than 17%, determined by x-ray diffraction. X-ray photoemission spectroscopy measurements show Co ions have a chemical valance of 2+. In this paper, hysteresis loops were clearly observed for Zn1-xCoxO films at room temperature. The coercive field, as well as saturation magnetization per Co atom, decreases with increasing Co content, within the range of 0.07

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-consistent solution of conduction band profile and subband energies for AlxGa1-xN-GaN quantum well is presented by solving the Schrodinger and Poisson equations. A new method is introduced to deal with the accumulation of the immobile charges at the AlxGa1-xN-GaN interface caused by spontaneous and piezoelectric polarization in the process of solving the Poisson equation. The effect of spontaneous and piezoelectric polarization is taken into account in the calculation. It also includes the effect of exchange-correlation to the one electron potential on the Coulomb interaction. Our analysis is based on the one electron effective-mass approximation and charge conservation condition. Based on this model, the electron wave functions and the conduction band structure are derived. We calculate the intersubband transition wavelength lambda(21) for different Al molar fraction of barrier and thickness of well. The calculated result can fit to the experimental data well. The dependence of the absorption coefficient a on the well width and the doping density is also investigated theoretically. (C) 2004 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medium energy (5-25 keV) C-13(+) ion implantation into diamond (100) to a fluence ranging from 10(16) cm(-2) to 10(18) cm(-2) was performed for the study of diamond growth via the approach of ion beam implantation. The samples were characterized with Rutherford backscattering/channelling spectroscopy, Raman spectroscopy, X-ray photoemission spectroscopy and Auger electron spectroscopy. Extended defects are formed in the cascade collision volume during bombardment at high temperatures. Carbon incorporation indeed induces a volume growth but the diamond (100) samples receiving a fluence of 4 x 10(17) to 2 x 10(18) at. cm(-2) (with a dose rate of 5 x 10(15) at. cm(-2) s(-1) at 5 to 25 keV and 800 degrees C) showed no He-ion channelling. Common to these samples is that the top surface layer of a few nanometers has a substantial amount of graphite which can be removed by chemical etching. The rest of the grown layer is polycrystalline diamond with a very high density of extended defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer assemblies of silver doped ZnS colloid and polycation were fabricated by a self-assembly technique exploiting electrostatic interaction. UV/Vis spectra showed the uniform deposition process and X-ray photoemission spectroscopy (XPS) confirmed the coexistence of silver. It was found that the emission spectra of the silver doped ZnS colloid red-shifted to 528 nm comparing with undoped ZnS colloid. However, the most important finding was that the luminescence intensity of doped ZnS assembled in films was much stronger than that of undoped ZnS in films and that of doped ZnS in the spin-casting film. The mechanism of the enhancement luminescence was discussed. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the growing interest in endohedral lanthanide fullerenes, Ce, as a typical +4 oxidation state lanthanide element, has been systematically studied. The synthesis, extraction and electronic structure of Ce@C-2n are investigated. Soot containing Ce@C-2n was synthesized in high yield by carbonizing CeO2-containing graphite rods and are back-burning the CeC2-enriched cathode deposit in a DC are plasma apparatus. Ce@C-2n, dominated by Ce@C-82, can be efficiently extracted from the insoluble part of the soot after toluene Soxhlet extraction by pyridine at high temperature and high pressure in a closed vessel. About 60% Ce@C-2n (2n = 82,80,78,76) and 35% Ce@C-82 can be enriched in the pyridine extract. This fact is identified by desorption electron impact mass spectrometry (DEI MS). The electronic structure of Ce@C-2n is analyzed by using X-ray photoemission spectroscopy (XPS) of pyridine-free film. It is suggested that the encapsulated Ce atom is in a charge state close to +3 and was effectively protected from reaction with water and oxygen by the enclosing fullerene cage. Unlike theoretical expectation, the electronic state of Ce@C-82 is formally described as Ce+3@C-82(3-). (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability and photoemission characteristics for reflection-mode GaAs photocathodes in a demountable vacuum system have been investigated by using spectral response and x-ray photoelectron spectroscopy measurements at room temperature. We find that the shape of the spectral response curve for the cathode changes with time in the vacuum system, but after applying fresh cesium to the degraded cathode, the spectral response can almost be restored. The change and restoration of curve shape are mainly attributed to the evolution of the surface barrier. We illustrate the evolution and analyze the influence of the barrier on the spectral response of the cathode. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel-doped ZnO (Zn1-xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni hits it chemical valence of 2 +. According to the . We studied the electronic magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at similar to 2 eV below the Fermi energy E-F, which is of Ni 3d origin. No emission was found at E-A, suggesting the insulating nature of the film. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.