289 resultados para Polycrystalline semiconductors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors demonstrate that the Rashba spin-orbit interaction in low-dimensional semiconductors can enhance or reduce the electron-phonon scattering rate by as much as 25%. The underlying mechanism is that the electron-phonon scattering phase space for the upper (lower) Rashba band is significantly enhanced (suppressed) by the spin-orbit interaction. While the scattering time decreases for the upper level, the mobility of the level increases due to an additional term in the electron velocity. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intervalley GAMMA - X deformation potential constants (IVDP's) have been calculated by first principle pseudopotential method for the III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. As a prototype crystal we have also carried out calculations on Si. When comparing the calculated IVDP's of LA phonon for GaP, InP and InAs and LO phonon for AlAs, AlSb, GaAs, GaSb and InSb with a previous calculation by EPM in rigid approximation, good agreements are found. However, our ab initio pseudopotential results of LA phonon for AlAs, AlSb, GaAs, GaSb and InSb and LO phonon for GaP, InP and InAs are about one order of magnitude smaller than those obtained by EPM calculations, which indicate that the electron redistributions upon the phonon deformations may be important in affecting GAMMA - X intervalley shatterings for these phonon modes when the anions are being displaced. In our calculations the phonon modes of LA and LO at X point have been evaluated in frozen phonon approximation. We have obtained, at the same time, the LAX and LOX phonon frequencies for these materials from total energy calculations. The calculated phonon frequencies agree very well with experimental values for these semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intervalley GAMMA-X deformation-potential constants (IVDP's) have been calculated by use of a first-principles pseudopotential method for the III-V zinc-blende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. When the calculated IVDP's of LA phonons for GaP, InP, and InAs and of LO phonons for AlAs, AlSb, GaAs, GaSb, and InSb are compared with results of a previous calculation that used the empirical pseudopotential method (EPM) and a rigid-ion approximation, good agreement is found. However, our ab initio pseudopotential results on IVDP's of LA phonons for AlAs, AlSb, GaAs, GaSb, and InSb and of LO phonons for GaP, InP, and InAs are about one order of magnitude smaller than those obtained by use of EPM calculations, indicating that the electron redistribution accompanying crystal-lattice deformation has a significant effect on GAMMA-X intervalley scattering for these phonon modes when the anions are being displaced. In our calculations the LA- and LO-phonon modes at the X point have been evaluated in the frozen-phonon approximation. We have also obtained the LAX- and LOX-phonon frequencies for these materials from total-energy calculations, which agree very well with experimental values for these semiconductors. We have also calculated GAMMA-X hole-phonon scattering matrix elements for the top valence bands in these nine semiconductors, from which the GAMMA-X IVDP's of the top valence bands for the longitudinal phonons and transverse phonons are evaluated, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used ab initio pseudopotential method to generate basis wavefunctions and eigen energies to carry out first principle calculations of the static macroscopic dielectric constant for GaAs and GaP. The resulted converged random phase approximation (RPA) value is 12.55 and 10.71, in excellent agreement to the experimental value of 12.4 and 10.86, respectively. The inclusion of the exchange correlation contribution makes the calculated result slightly worsen. A convergence test with respect to the number of k points in Brillouin zone (BZ) integration was carried out. Sixty irreducible BZ k points were used to achieve the converged results. Integration with only 10 special k points increased the RPA value by 15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal zone boundary X phonon frequencies have been calculated by a first principles pseudopotential method for III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. The phonon frequencies have been evaluated from total energy calculations in the frozen phonon approximation. The calculated phonon frequencies agree very well with the experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation dynamics and morphology of undoped and heavily phosphorus-doped polycrystalline silicon films oxidized at a wide temperature and time range in dry and wet O2 atmosphere have been investigated. It is shown that the oxidation rates of polycrystalline silicon films are different from that of single-crystal silicon when the oxidation temperature is below 1000-degrees-C. There is a characteristic oxidation time, t(c), under which the undoped polysilicon oxide is not only thicker than that of (100)-oriented single-crystal silicon, but also thicker than that of (111)-oriented single-crystal silicon. For phosphorus-doped polycrystalline silicon films, the oxide thickness is thinner not only than that of (111)-oriented, single-crystal silicon, but also thinner than that of (100)-oriented, single-crystal silicon. According to TEM cross-sectional studies, these characteristics are due to the enhanced oxidation at grain boundaries of polycrystalline silicon films. A stress-enhanced oxidation model has been proposed and used to explain successfully the enhanced oxidation at grain boundaries of polycrystalline silicon films. Using this model, the oxidation linear rate constant of polysilicon (B/A)poly has been calculated and used in the modeling of the oxidation dynamics. The model results are in good agreement with the experimental data over the entire temperature and time ranges studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.