228 resultados para Plasma enhanced chemical vapour depositions (PECVD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Good quality hydrogenated protocrystalline silicon films were successfully prepared by radio frequency plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios (R = ([H-2]/[SiH4]) from 10 to 100). The photosensitivity of the films is up to 10(6) under the light intensity of 50mW.cm(-2). The microstructure of the films was studied by micro-region Raman scattering spectra at room temperature. The deconvolution of the Raman spectra by Gaussion functions shows that the films deposited under low hydrogen dilution ratios (R < 33) exhibit typical amorphous properties, while the films deposited under high hydrogen dilution ratios (R > 50) possess a diphasic structure, with increasing crystalline volume fraction with R. The size of the crystallites in the diphasic films is about 2.4 mm, which was deduced from the phonon confinement model. The intermediate range order of the silicon film increases with increasing hydrogen dilution ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kind of hydrogenated diphasic, silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic and microstructural properties of the films have been investigated by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). Our experimental results and corresponding analyses showed that the diphasic films, incorporated with a subtle boron compensation, could gain both the fine photosensitivity and high stability, provided the crystalline fraction (f) was controlled in the range of 0 < f < 0.3. When compared with the conventional hydrogenated amorphous silicon (a-Si:H), the diphasic films are more ordered and robust in the microstructure, and have a less clustered phase in the Si-H bond configurations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new regime of plasma-enhanced chemical-vapor deposition (PECVD), referred to as "uninterrupted growth/annealing" method, has been proposed for preparation of high-quality hydrogenated amorphous silicon (a-Si:H) films. By using this regime, the deposition process no longer needs to be interrupted, as done in the chemical annealing or layer by layer deposition, while the growing surface is continuously subjected to an enhanced annealing treatment with atomic hydrogen created in the hydrogen-diluted reactant gas mixture at a relatively high plasma power. The intensity of the hydrogen plasma treatment is controlled at such a level that the deposition conditions of the resultant films approach the threshold for microcrystal formation. In addition, a low level of B-compensation is used to adjust the position of the Fermi level close to the midgap. Under these conditions, we find that the stability and optoelectronic properties of a-Si:H films have been significantly improved. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-Raman measurements were carried out to investigate the microstructure of amorphous silicon-nitrogen alloy (a-SiNx:H) samples with different N contents prepared by plasma enhanced chemical vapor deposition (PECVD). Resonant Raman effect was discovered by using 647.1- and 514.5-nm excitation wavelengths. The frequency of TO mode downshifts with increasing photon energy without varying its width, while LO mode expands to a great extent. The frequency-dependent shift of TO band is explained by heterogeneous structure model and quantum confinement model, and the width expansion of LO mode may be related to the overlapping of LA and LO bands. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon (nc-Si) embedded SiO2 matrix has been formed by annealing the SiOx films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. Absorption coefficient and photoluminescence of the films have been measured at room temperature. The experimental results show that there is an "aUrbach-like" b exponential absorption in the spectral range of 2.0-3.0 eV. The relationship of (alpha hv)(1/2) proportional to(hv - E-g) demonstrates that the luminescent nc-Si have an indirect band structure. The existence of Stokes shift between photoluminescence and absorption edge indicates that radiative combination can take place not only between electron states and hole states but also between shallow trap states of electrons and holes. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two strong photoluminescence (PL) bands in the spectral range of 550-900 nm have been observed at room temperature from a series of a-SiOx:H films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. One is composed of a main band in the red-light region and a shoulder; the other is located at about 850 nm, only found after 1170 degrees C annealing in N-2 atmosphere. In conjunction with infrared (IR) and micro-Raman spectra, it is thought that the two PL bands are associated with a-Si clusters in the SiOx network and nanocrystalline silicon in SiO2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcrystalline silicon films were deposited by very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) with different hydrogen dilution. The microstructure of these films was investigated using Raman spectroscopy and infrared absorption (IR) spectra. The crystalline, amorphous, and grain boundary volume fractions X-c, X-a and X-gb were estimated from Raman measurements. An interface structure factor (R-if) is proposed to characterize the grain boundary volume fractions in IR spectroscopy. The density of states (DOS) of the microcrystalline crystalline silicon films were studied by phase-shift analysis of modulated photocurrent (MPC) and photoconductivity spectroscopy. It was observed that DOS increases with increasing grain boundary volume fractions, while the values of electron mobility-lifetime product mu T-e(e) disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products μτ of the composite film were increased by nearly one order of magnitude from 6.96 × 10~(-7) to 5.08 × 10~(-6) cm~2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.