650 resultados para POLY(N-VINYLCARBAZOLE)
Resumo:
Hybrid bulk heterojunction solar cells based on blend of poly(3-hexylthiophene) (P3HT) and TiO2 nanotubes or dye(N719) modified TiO2 nanotubes were processed from solution and characterized to research the nature of organic/inorganic hybrid materials. Compared with the pristine polymer P3HT and TiO2 nanoparticles/P3HT solar cells, the TiO2 nanotubes/P3HT hybrid solar cells show obvious performance improvement, due to the formation of the bulk heterojunction and charge transport improvement. A further improvement in the device performance can be achieved by modifying TiO2 nanotube surface with a standard dye N719 which can play a role in the improvement of both the light absorption and charge dissociation. Compared with the non-modified TiO2 nanotubes solar cells, the modified ones have better power conversion efficiency under 100 mW/cm(2) illumination with 500W Xenon lamp. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Ordered arrays of FePt nanoparticles were prepared using a diblock polymer micellar method combined with plasma treatment. Rutherford backscattering spectroscopy analyses reveal that the molar ratios of Fe to Pt in metal-salt-loaded micelles deviate from those when metal precursors are added, and that the plasma treatment processes have little influence upon the compositions of the resulting FePt nanoparticles. The results from Fourier transform infrared spectroscopy show that the maximum loadings of FeCl3 and H2PtCl6 inside poly( styrene)-poly(4-vinylpyridine) micelles are different. The composition deviation of FePt nanoparticles is attributed to the fact that one FeCl3 molecule coordinates with a single 4-vinylpyridine (4VP) unit, while two neighboring and uncomplexed 4VP units are required for one H2PtCl6 molecule. Additionally, we demonstrate that the center-to-center distances of the neighboring FePt nanoparticles can also be tuned by varying the drawing velocity.
Resumo:
We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq(3)). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq(3), while the EL onset of DCJTB and Alq(3) is simultaneous. However, the EL emission of the double-layered device of PVK/Alq(3) originates only from Alq(3). The results show that DCJTB dopants can not only help to tunnel electrons from Alq(3) zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq(3) lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq(3) and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq(3). The electron potential difference of the interface between Alq(3) and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.
Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells
Resumo:
In order to enhance light absorption of thin film poly-crystalline silicon (TF poly-Si) solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory, the effective photon trapping flux (EPTF) and effective photon trapping efficiency (EPTE) were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures. The EPTF, EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer. With an optimum size and density of SiO2/Au nanoshell light trapping layer, the EPTE could reach up to 40% due to the enhancement of light trapping over a broad spectral range, especially from 500 to 800 nm.
Resumo:
Poly(3,4-ethylenedioxythiopliene):poly(styrene sulfonate) (PEDOT:PSS) films have been electrochemically polymerized in situ on ITO glass substrate in boron trifluoride diethyl etherate electrolyte (BFEE). Cyclic voltammograms show good redox activity and stability of the PEDOT films. These films had been directly used to fabricate organic-inorganic hybrid solar cells with the structure of ITO/PEDOT/ZnO:MDMC-PPV/Al. The solar cells made of electrochemically polymerized films exhibit higher energy conversion efficiencies compared with that prepared by the spin-coating method, and the highest value is 0.33%. This in-situ electropolymerized method effectively simplifies fabricating procedures and may blaze a facile and economical route for producing high-efficiency solar cells.
Resumo:
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.
Resumo:
报道了快速热化学气相沉积(RTCVD)工艺制备多晶硅(poly -Si)薄膜及电池的实验和结果。采用SiH_2Co_2作为原料气体,衬底温度为1030℃时,薄膜的生长速率为10nm/s。发现薄膜的平均晶粒度及载流子迁移率与衬底温度和材料有关。用该薄膜在未抛光重掺杂磷的硅衬底上制备1cm~2的p~+n结样品电池,无减反射涂层,其转换效率为4.54%(AM1.5,100mW/cm~2,25℃)。