187 resultados para Material characterizations
Resumo:
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm(2). N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
Resumo:
Two kinds of nickel(II) and copper(II) P-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present our experimental results supporting optical-electrical hybrid data storage by optical recording and electrical reading using Ge2Sb2Te5as recording medium. The sheet resistance of laser- irradiated Ge2Sb2Te5. lms exhibits an abrupt change of four orders of magnitude ( from 10 7 to 10 3./ sq) with increasing laser power, current- voltage curves of the amorphous area and the laser- crystallized dots, measured by a conductive atomic force microscope ( C- AFM), show that their resistivities are 2.725 and 3.375 x 10- 3., respectively, the surface current distribution in the. lms also shows high and low resistance states. All these results suggest that the laser- recorded bit can be read electrically by measuring the change of electrical resistivity, thus making optical electrical hybrid data storage possible.
Resumo:
Two new hydrazone chelating ligands, 2-(2-(5-methylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione (HL1) and 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-5,5-dimethylcyclohexane- 1,3-dione (HL2), and their nickel(II) and copper(II) complexes were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using spin-coating and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential thermogravimetry (DTG). Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
A colorless transparent, blue green emission material was fabricated by sintering porous glass impregnated with copper ions. The emission spectral profile obtained from Cu+ -doped high silica glass (HSG) by 267-mn monochromatic light excitation matches that obtained by pumping with an 800-nm femtosecond laser, indicating that the emissions in both cases come from an identical origin. The upconversion emission excited by 800-nm femtosecond laser is considered to be a three-photon excitation process. A tentative scheme of upconverted emission from Cu+ -doped HSG was also proposed. The glass materials presented herein are expected to find application in lamps, high density optical storage, and three-dimensional color displays.
Resumo:
Nanocrystalline Zn0.95-xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an autocombustion method. X-ray absorption spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectrometry and Ni 2p core-level photoemission spectroscopy analyses revealed that some of the nickel ions were substituted for Zn2+ into the ZnO matrix while others gave birth to NiO nanoclusters embedded in the ZnO particles. The Zn0.95Ni0.05O sample showed no enhancement of room-temperature ferromagnetism after Al doping. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.
Resumo:
We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
An arrayed waveguide grating based on SOI material was fabricated by inductive coupled plasma (ICP) etching technology. The central wavelength of the device was designed at 1.5509 mu m and the channel spacing was 200 GHz. Comparing with the values of the design, the differences of the central wavelength and the channel spacing in the test were 0.28 nm and 0.02 nm, respectively. The adjacent channel crosstalk was about 10 dB, and the uniformity of the five channels' insertion loss was only 0.7 dB. The results show that the device can be used as a demultiplexer.
Resumo:
A photonic crystal vertical-cavity-surface-emitting laser ( PC-VCSEL) with a wavelength of about 850 nm was realized. The direct-current electrically-driven PC-VCSELs with a minimum threshold current of 2 mA and a maximum threshold current of 13.5 mA were obtained. We fabricated a series of PC-VCSEL chips whose lattice constants are in the range from 0.5 to 3 mu m with different filling factors, and found that the laser characterization depends on the lattice constant, the filling factor, the size of cavity, etc.