52 resultados para Low-dose
Resumo:
The metabolic accumulation and species of rare earth in rat liver were investigated by ICP-MS and chromatography after the rats were fed by a low dose of mixed rare earth for a long time or the administration of a high dose of lanthanum for a short time. It was found that the content of rare earth in the liver increased with the arising of dose of drug delivery. Their accumulation rate was different, for example, La>Ce>Nd>Pr. The protein which could combine,with rare earth specially were not gotten through chromatography. It was suggested that rare earth could bind to many proteins voluntarily, such as some important enzymes and it might be separated from the combined proteins under certain conditions.
Resumo:
The metabolic accumulation and species of lanthanum in Wistar rat liver were investigated by ICP-MS, gel exclusion chromatography and ultrafiltration after the rats were fed by low dose of lanthanum for a long time. It was found that the content of La in the liver increased regularly with arise of dose and time of drug delivery. After the administration was stopped for a certain time a part of lanthanum in the liver Tvas metabolized, but;the metabolic rate was very slow, The lanthanum in rat liver was distributed in the soluble protein with molecular weight: of more than 60000 mostly. Rare Earth existed in the six elution peaks separated by Sephacryl S-200. The amount of lanthanum in the first elution fraction is the largest, which was 88 percent in the whole content of lanthanum in proteins with molecular weight more than 60000.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Prenatal morphine exposure affects neural development of fetus by impairing learning and memory, and increasing susceptibility to morphine abuse. Because nervous systems have different developmental characteristics during different developmental stages, administration of morphine at different stages also has different effects on learning, memory, and susceptibility to morphine. Due to the precise developmental processes of neurotransmitter systems in chick embryo’s brain, and unique superiority of chick embryo model, the purpose of the present studies was to explore critical periods correlated to the memory impairment and the increasing susceptibility to morphine, via one-trial passive avoidance and conditioned place preference as behavior models. Then the possible roles of mu and delta opioid receptors as the possible mechanism were analyzed. Experiment 1 showed that injecting low dose of morphine (1 mg/kg) during the period embryonic 5 to 8 significantly impaired the function of learning and memory, worse than any other periods of the same treatment. Experiment 2 showed that injecting low dose of morphine during the period embryonic 17 to 20 significantly increased the susceptibility to morphine in the new-born chicks. The affected chicks acquired the morphine conditioned place preference more quickly, and maintained it much longer. Experiment 3 showed that during E5-8, injecting delta receptor antagonist naltrindole reversed the learning and memory impairment caused by morphine while delta receptor agonist DPDPE impaired learning and partial memory function. On the other hand, mu opioid receptors had little effect. As for E17-20, given naloxonazine can reverse the increases of susceptibility to morphine, and the mu receptor agonist DAGO cause the increases of susceptibility to morphine. Delta receptors have no effect. The above results demonstrated that prenatal morphine expousure at different developmental periods of chick embryo caused different influences on memory and susceptibility to morphine. That is, E5-8 is the critical period correlate to memory impairment; and E17-20 is the critical period correlate to susceptibility to morphine. Delta receptors were critical in learning and memory impairment while mu receptors in susceptibility.
Resumo:
Credible and stable animal behavioral models are necessary to research the mechanisms of addiction in vivo, especially to study the relationship between memory or stress and drug addiction, which has been one of the focuses in this field. So the object of this study was to observe the influences of several factors on the behavioral effects of morphine shown in the paradigms of conditioned place preference (CPP) and locomotor activity (LA), and to explore the effects of adrenalectomy on LA induced by morphine in rats. In addition, the cortexes of rats were examined, which were exposed to chronic administration of several doses of morphine with or without foot shock. Moreover, a new behavioral model was built to quantify the motivation of drug seeking. The results showed that CPP was more sensitive to low dose of morphine than to high dose. The period of experiment could be shortened by increasing the training times everyday, whereas in this way the dose of morphine should be low enough to avoid the impact between the near two exposures to morphine. Effects of chronic administration of morphine on LA in rats were dose- and time- dependent, which supplied evidence to choose parameters in other behavioral models. The results obtained by the simplified LA paradigm showed that hyperactivity of low dose of morphine following hypoactivity, and naloxone had no effects on LA but blocked the locomotion effects of morphine. Obvious effects of morphine on LA of rats might depend on a reasonable level of plasma corticosterone, which may determine individual vulnerability to drug addiction. Stress may also potentiate the vulnerability by aggravating damage to cortex of rats induced by drug dose-dependently, which is suggested by the results of histological examination. The result that frontal and temporal cortexes and hippocampus were injured suggests that there may be a close relationship between memory and drug addiction. It was showed that the new behavioral model on the basis of Morris water maze might be used to quantify the motivation of drug-craving.
Resumo:
A silicon-on-insulator optical fiber-to-waveguide spot-size converter (SSC) using Poly-MethylMethAcrylate (PMMA) is presented for integrated optical circuits. Unlike the conventional use of PMMA as a positive resist, it has been successfully used as a negative resist with high-dose electron exposure for the fabrication of ultrafine silicon wire waveguides. Additionally, this process is able to reduce the side-wall roughness, and substantially depresses the unwanted propagation loss. Exploiting this technology, the authors demonstrated that the SSC can improve coupling efficiency by as much as over 2.5 dB per coupling facet, compared with that of SSC fabricated with PMMA as a positive resist with the same dimension.
Resumo:
Mn ions were implanted to n-type Si(0 0 1) single crystal by low-energy ion beam deposition technique with an energy of 1000 eV and a dose of 7.5 x 10^{17} cm^{-2}. The samples were held at room temperature and at 300degreesC during implantation. Auger electron spectroscopy depth profiles of samples indicate that the Mn ions reach deeper in the sample implanted at 300degreesC than in the sample implanted at room temperature. X-ray diffraction measurements show that the structure of the sample implanted at room temperature is amorphous while that of the sample implanted at 300degreesC is crystallized. There are no new phases found except silicon both in the two samples. Atomic force microscopy images of samples indicate that the sample implanted at 300degreesC has island-like humps that cover the sample surface while there is no such kind of characteristic in the sample implanted at room temperature. The magnetic properties of samples were investigated by alternating gradient magnetometer (AGM). The sample implanted at 300degreesC shows ferromagnetic behavior at room temperature.
Resumo:
High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.
Resumo:
With advancing age, monkeys develop deficits in spatial working memory resembling those induced by lesions of the prefrontal cortex (PFC). Aged monkeys also exhibit marked loss of dopamine from the PFC, a transmitter known to be important for proper PFC cognitive function. Previous results suggest that D1 agonist treatment can improve spatial working memory abilities in aged monkeys. However, this research was limited by the use of drugs with either partial agonist actions or significant D2 receptor actions. In our study, the selective dopamine D1 receptor full agonists A77636 and SKF81297 were examined in aged monkeys for effects on the working memory functions of the PFC. Both compounds produced a significant, dose-related effect on delayed response performance without evidence of side effects: low doses improved performance although higher doses impaired or had no effect on performance. Both the improvement and impairment in performance were reversed by pretreatment with the D1 receptor antagonist, SCH23390. These findings are consistent with previous results demonstrating that there is a narrow range of D1 receptor stimulation for optimal PFC cognitive function, and suggest that very low doses of D1 receptor agonists may have cognitive-enhancing actions in the elderly.
Resumo:
An acute toxicity experiment was conducted by intraperitoneal injection with a sublethal dose of extracted microcystins (MCs), 50 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight (BW), to examine tissue distribution and depuration of MCs in crucian carp (Carassius carassius). Liver to body weight ratio increased at 3, 12, 24, and 48 h postinjection compared with that at 0 h (p < 0.05). MC concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, 48, and 168 h postinjection using liquid chromatography coupled with mass spectrometry (LC-MS). The highest concentration of MCs (MC-RR + MC-LR) was found in blood, 2 -270 ng/g dry weight (DW), followed by heart (3 -100 ng/g DW) and kidney (13 -88 ng/g DW). MC levels were relatively low in liver, gonad, intestine, spleen, and brain. MC contents in gills, gallbladder, and muscle were below the limit of detection. Significant negative correlation was present between MC-RR concentration in blood and that in kidney, confirming that blood was important in the transportation of MC-RR to kidney for excretion. Rapid accumulation and slow degradation of MCs were observed in gonad, liver, intestine, spleen, and brain. Only 0.07% of injected MCs were detected in liver. The recovery of MCs in liver of crucian carp seemed to be dose dependent.
Resumo:
In this work, we investigate the effects of the indium ion implantation towards the back-channel interface on the total dose hardness of the n-channel SOI MOSFET. The results show that the indium implant has slight impact on the normal threshold voltage while preserving low leakage current after irradiation. The advantage is attributed to the narrow as-implanted and postanneal profile of the indium implantation. Two-dimensional simulations have been used to understand the physical mechanisms of the effects.