64 resultados para LESS-THAN -5.0
Resumo:
Photoluminescence (PL) is used to study the interface properties of GaAs/AlGaAs quantum well (QW) heterostructures prepared by molecular beam epitaxy with growth interruption (GI). The discrete luminescence lines observed for the sample with GI are assigned to the splitting of the heavy-hole exciton associated with heterointerface islands with the lateral size greater than exciton diameter and mean height less than one monolayer, and the spectra have the Gaussian lineshapes. The results strongly support the microroughness model. We also study the temperature dependence of the exciton energies and find that excitons are localized at the interface roughness at low temperature even in the sample with GI. The lateral size of the microroughness of the GI sample is estimated to be less than 5 nm from the exciton localization energy.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.
Resumo:
Using an oscilloscope, a high-speed video camera and a double-electrostatic probe system, the periodicity and amplitude of the fluctuations in arc voltage, jet luminance and ion saturation current of a plasma jet were monitored to investigate various sources of instabilities and their effects in a non-transferred dc plasma torch operated at reduced pressure. The results show that besides a 300 Hz main fluctuation inherited from the power supply, arc voltage fluctuation of 3–4 kHz with an amplitude less than 5% of the mean voltage was mainly affected by the total gas flow rate. The arc voltage fluctuation can affect the energy distribution of the plasma jet which is detectable by electrostatic probes and a high-speed video camera. The steadiness of energy transfer is also affected by the laminar or turbulent flow state of the plasma.
Resumo:
In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Novel ceramic-carbon electrodes (CCEs) containing 1:12-phosphomolybdic acid (PMo12) were constructed by homogeneously dispersing PMo12 and graphite powder into methyltrimethoxysilane-derived gel. Peak currents for the PMo12-doped CCE were surface-controlled at lower scan rates but diffusion-controlled at higher scan rates and peak potentials shifted to the negative potential direction with increasing pH. In addition, the electrode exhibited electrocatalytic activity toward the oxidation of ascorbic acid. The PMo12-modified CCE presented good chemical and mechanical stability and good surface renewability (ten successive polishing resulted in less than 5% relative standard deviation). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Effects of the compatibilizer polypropylene grafted with glycidyl methacrylate(PP-g-GMA) on the morphology, thermal, rheological and mechanical properties of polypropylene and polycarbonate blends (PP/PC) were studied. It was found that the addition of PP-g-GMA significantly changed their morphology. The mean size of domains reduced from 20 mu m to less than 5 mu m. The dispersed domain size is also strongly dependent upon the content of PP-g-GMA. The interfacial tension of PP/PC/PP-g-GMA (50/30/20) is only about one-tenth of PP/PC (70/30). The crystallization temperature of PP in PP/PC/PP-g-GMA is 5-8 degrees C higher than that of PP in PP/PC blends. Characterization studies based on mechanical properties, differential scanning calorimetry, rheology and morphological evidence obtained by using scanning electron microscopy support the hypothesis that an in-situ copolymer PP-g-PC was formed during the blending process. (C) 1997 Elsevier Science Ltd.
Resumo:
An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.
Resumo:
Chemically modified electrodes prepared by adsorbing prussian blue on a glassy carbon electrode are shown to catalyse the electro-oxidation of cysteine, N-acetylcysteine and glutathione in acidic media. The catalytic response is evaluated with respect to the potential scan rate, the solution pH, the concentration dependence, and other variables. Covering the electrode with Nafion(R) film improved the stability and reproducibility in liquid chromatography with electrochemical detection to the extent that repetitive sample injections produced relative standard deviations of less than 5% over several hours of operation. The limit of detection was 4 pmol for cysteine, 33 pmol for glutathione and 61 pmol for N-acetylcysteine.
Resumo:
C-phycocyanin was purified on a large scale by a combination of expanded bed adsorption, anion-exchange chromatography and hydroxyapatite chromatography from inferior Spirulina platensis that cannot be used for human consumption. First, phycobiliproteins were extracted by a simple, scaleable method and then were recovered by Phenyl-Sepharose chromatography in an expanded bed column. The purity (the A(620)/A(280) ratio) of C-phycocyanin isolated with STREAMLINE (TM) Column was up to 2.87, and the yield was as high as 31 mg/g of dried S. platensis. After the first step, we used conventional anion-exchange chromatography for the purification steps, with a yield of 7.7 mg/g of dried S. platensis at a purity greater than 3.2 and with an A(620)/A(650) index higher than 5.0. The fractions from anion-exchange chromatography with a level of purity that did not conform to the above standard were subjected to hydroxyapatite chromatography, with a C-PC yield of 4.45 mg/g of dried S. platensis with a purity greater than 3.2. The protein from both purification methods showed one absolute absorption peak at 620 nm and a fluorescence maximum at 650 nm, which is consistent with the typical spectrum of C-phycocyanin. SDS-PAGE gave two bands corresponding to 21 and 18 kDa. In-gel digestion and LC-ESI-MS showed that the protein is C-phycocyanin. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
As a high-sedimentation rate depocenter along the path of the Kuroshio Current, the southwesternmost part of the Okinawa Trough is a key area to understand the Kuroshio history and sediments transportation. A 34.17-m-long sediment core was obtained by the advanced piston corer of Marco Polo/IMAGES XII MARION DUFRESNE during the May 2005 from the Southern Okinawa Trough at site MD05-2908. The recovered sediments were analyzed by AMS C-14 dating, coarse size fraction (> 63 mu m) extraction and moisture content determination in order to study its sedimentation flux and provenance. The depth-age relationship of core MD05-2908 was well constrained by 17 C-14 dating points. The sediments span across the mid-Holocene (6.8 ka B.P.) and have remarkablely high sedimentation rates between 1.8 and 21-2 m/ka, which is well consistent with the modern observations from sediment traps. We identified five 70-200 a periods of abnormally rapid sedimentation events at 6790-6600 a B.P., 5690-5600 a B.P., 4820-4720 a B.P., 1090-880 a B.P., and 260-190 a B.P., during which the highest sedimentation rate is up to 21-2 m/ka. In general, the lithology of the sediments were dominated by silt and clay, associated with less than 5% coarse size fraction (a parts per thousand << 63 mu m). As the most significant sediment source, the Lanyang River in northeastern Taiwan annually deliver about 10Mt materials to the coastal and offshore region of northeast Taiwan, a portion of which could be carried northward by currents toward the study area. Therefore, we concluded that the 5 abnormally rapid sedimentation events may be related to intensified rainfall in Taiwan and thus increased materials to our study area at that time. However, a few extreme-rapid sedimentation events cannot be explained by normal river runoff alone. The large earthquakes or typhoons induced hyperpycnal discharge of fluvial sediment to the ocean may also act as a potential source supply to the Okinawa Trough.
Resumo:
In this paper, the reactions of nitrone, N-methyl nitrone, N-phenyl nitrone and their hydroxylamine tautomers (vinyl-hydroxylamine, N-methyl-vinyl-hydroxylamine and N-phenyl-vinyl-hydroxylamine) on the reconstructed C(100)-2 x 1 surface have been investigated using hybrid density functional theory (B3LYP), Moller-Plesset second-order perturbation (MP2) and multi-configuration complete-active-space self-consistent-field (CASSCF) methods. The calculations showed that all the nitrones can react with the surface "dimer" via facile 1.3-dipolar cycloaddition with small activation barriers (less than 12.0 kJ/mol at B3LYP/6-31g(d) level). The [2+2] cycloaddition of hydroxylamine tautomers on the C(100) surface follows a diradical mechanism. Hydroxylamine tautomers first form diradical intermediates with the reconstructed C(I 00)-2 x I surface by overcoming a large activation barrier of 50-60 kJ/mol (B3LYP), then generate [2+2] cycloaddition products via diradical transition states with negligible activation barriers. The surface reactions result in hydroxyl or amino-terminated diamond surfaces, which offers new opportunity for further modifications. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This thesis is based on the research project of Study on the Geological Characteristics and Remaining Oil Distribution Law of Neogene Reservoirs in Liunan Area, which is one of the key research projects set by PetroChina Jidong Oilfield Company in 2006. The determination of remaining oil distribution and its saturation changes are the most important research contents for the development and production modification of oilfields in high water-cut phases. Liunan oilfield, located in Tangshan of Hebei Province geographically and in Gaoliu structural belt of Nanpu sag in Bohai Bay Basin structurally, is one of the earliest fields put into production of Jidong oilfield. Focusing on the development problems encountered during the production of the field, this thesis establishes the fine geological reservoir model through the study of reservoir properties such as fine beds correlation, sedimentary facies, micro structures, micro reservoir architecture, flow units and fluid properties. Using routine method of reservoir engineering and technology of reservoir numerical modeling, remaining oil distribution in the target beds of Liunan area is predicted successfully, while the controling factors of remaining oil distribution are illustrated, and the model of remaining oil distribution for fault-block structure reservoirs is established. Using staged-subdivision reservoir correlation and FZI study, the Strata in Liunan Area is subdivided step by step; oil sand body data-list is recompiled; diagram databases are established; plane and section configuration of monolayer sandstone body, and combination pattern of sandstone bodys are summarized. The study of multi-level staged subdivision for sedimentary micro-facies shows that the Lower member of Minghuazhen formation and the whole Guantao formation in Liunan Area belong to meandering river and braided river sedimentary facies respectively, including 8 micro facies such as after point bar, channel bar, channel, natural levee, crevasse splay, abandoned channel, flood plain and flood basin. Fine 3D geological modeling is performed through the application of advanced software and integration of geological, seismic logging and reservoir engineering data. High resolution numerical simulation is performed with a reserve fitting error less than 3%, an average pressure fitting fluctuation range lower than 2Mpa and an accumulate water cut fitting error less than 5%. In this way, the distribution law of the target reservoir in the study area is basically recognized. Eight major remaining oil distribution models are established after analysis of production status and production features in different blocks and different layers. In addition, fuzzy mathematics method is used to the integreted evaluation and prediction of abundant remaining oil accumulation area in major production beds and key sedimentary time units of the shallow strata in Liunan Area and corresponding modification comments are put forward. In summary, the establishment of fine reservoir geological model, reservoir numerical simulation and distribution prediction of remaining oil make a sound foundation for further stimulation of oilfield development performance.
Resumo:
Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.