78 resultados para Initial carrier teachers
Resumo:
This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.
Resumo:
Using spatially resolved cathodoluminescence spectroscopy, we investigate the spatial luminescence distribution in a fully strained (In,Ga)N layer, in particular, its correlation with the distribution of threading dislocations (TDs). Regarding the impact of TDs on the luminescence properties, we can clearly distinguish between pure edge-type TDs and TDs with screw component. At the positions of both types of TDs, we establish nonradiative recombination sinks. The radius for carrier capture is at least four times larger for TDs with screw component as for pure edge-type TDs. The large capture radius of the former is due to a spiral-like growth mode resulting in an increase in the In content in the center of the spiral domains in comparison to their periphery.
Resumo:
A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.
Resumo:
We have studied the lateral carrier transfer in a specially designed quantum dot chain structure by means of time-resolved photoluminescence (PL) and polarization PL. The PL decay time increases with temperature, following the T-1/2 law for the typical one-dimensional quantum system. The decay time depends strongly on the emission energy: it decreases as the photon energy increases. Moreover, a strong polarization anisotropy is observed. These results are attributed to the efficient lateral transfer of carriers along the chain direction. (c) 2008 American Institute of Physics.
Resumo:
A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.
Resumo:
In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.
Resumo:
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.
Resumo:
We investigate the dependence of the differential reflection on the structure parameters of quantum dot (QD) heterostructures in pump-probe reflection measurements by both numerical simulations based on the finite-difference time-domain technique and theoretical calculations based on the theory of dielectric films. It is revealed that the value and sign of the differential reflection strongly depend on the thickness of the cap layer and the QD layer. In addition, a comparison between the carrier dynamics in undoped and p-doped InAs/GaAs QDs is carried out by pump-probe reflection measurements. The carrier capture time from the GaAs barrier into the InAs wetting layer and that from the InAs wetting layer into the InAs QDs are extracted by appropriately fitting differential reflection spectra. Moreover, the dependence of the carrier dynamics on the injected carrier density is identified. A detailed analysis of the carrier dynamics in the undoped and p-doped QDs based on the differential reflection spectra is presented, and its difference with that derived from the time-resolved photoluminescence is discussed. (C) 2008 American Institute of Physics.
Resumo:
On the metalorganic chemical vapour deposition growth of AlN, by adjusting H-2+N-2 mixture gas components, we can gradually control island dimension. During the Volmer - Weber growth, the 2-dimensional coalescence of the islands induces an intrinsic tensile stress. Then, this process can control the in-plane stress: with the N-2 content increasing from 0 to 3 slm, the in-plane stress gradually changes from 1.5 GPa tensile stress to - 1.2GPa compressive stress. Especially, with the 0.5 slm N-2 + 2.5 slm H-2 mixture gas, the in-plane stress is only 0.1 GPa, which is close to the complete relaxation state. Under this condition, this sample has good crystal and optical qualities.
Resumo:
Based on appropriate combination of different band-gap InGaAsP, a new edge-coupled two-terminal double heterojunction phototransistor (ECTT-DHPT) was designed and fabricated, which is double heterojunction, free-aluminium, and works under uni-travelling-carrier mode and optically gradual coupling mode. This device is fully compatible with monolithic micro-wave integrated circuits (MMIC) and heterojunction bipolar transistor (HBT) in material and process. The DC characteristics reveal that the new ECTT-DHPT can perform good optoelectronic mix operation and linear amplification operation by optically biased at two appropriate value respectively. Responsivity of more than 52 A/W and dark current of 70 nA (when V-EC = 1 V) were obtained.
Resumo:
We present the design and numerical simulation results for a silicon waveguide modulator based on carrier depletion in a linear array of periodically interleaved PN junctions that are oriented perpendicular to the light propagation direction. In this geometry the overlap of the optical waveguide mode with the depletion region is much larger than in designs using a single PN junction aligned parallel to the waveguide propagation direction. Simulations predict that an optimized modulator will have a high modulation efficiency of 0.56 V.cm for a 3V bias, with a 3 dB frequency bandwidth of over 40 GHz. This device has a length of 1.86 mm with a maximum intrinsic loss of 4.3 dB at 0V bias, due to free carrier absorption. (C) 2009 Optical Society of America
Resumo:
A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF) bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.
Resumo:
We measured the carrier concentration distribution of gradient-doped GaAs/GqAlAs epilayers grown by molecular beam epitaxy before and after annealing at 600 degrees C, using electrochemical capacitance voltage profiling, to investigate the internal variation of transmission-mode GaAs photocathodes arising from the annealing process. The results show that the carrier concentration increased after annealing. As a result, the total band-bending energy in the gradient-doped GaAs emission layer increased by 25.24% after annealing, which improves the pbotoexcited electron movement toward the surface. On the other hand, the annealing process resulted in a worse carrier concentration discrepancy between the GaAs and the GaAlAs, which causes a lower back interface potential barrier, decreasing the amount of high-energy photoelectrons. (C) 2009 Optical Society of America
Resumo:
We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq(3)). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq(3), while the EL onset of DCJTB and Alq(3) is simultaneous. However, the EL emission of the double-layered device of PVK/Alq(3) originates only from Alq(3). The results show that DCJTB dopants can not only help to tunnel electrons from Alq(3) zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq(3) lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq(3) and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq(3). The electron potential difference of the interface between Alq(3) and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.