224 resultados para Illumination conditions
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
Hexagonal array is a basic structure widely exists in nature and adopted by optoclectronic device. A phase plate based on the fractional Talbot effect that converts a single expanded laser beam into a regular hexagonal array of uniformly illuminated apertures with virtually 100% efficiency is presented. The uniform hexagonal array illumination with a fill factor of 1/12 is demonstrated by the computer simulation. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The anisotropic Bragg diffraction of the volume holographic gratings in photorefractive crystals are investigated based on the model of anisotropic coupled-wave theory. The effect of the initial intensity ratio and the recording angles of the two recording waves on the anisotropic Bragg diffraction properties is discussed. It is shown that both the ratio of the initial intensity and the incident angles of the recording waves are selective action for the anisotropic Bragg diffraction efficiency of the volume holographic gratings, while these two recording conditions are not selective action for the isotropic Bragg diffraction. Furthermore, the Bragg phase matching condition of anisotropic diffraction is analyzed when the recording angles change. (C) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The Talbot effect of a high-density grating under femtosecond laser illumination is analyzed with rigorous electromagnetic theory which is based on the Fourier decomposition and the rigorous coupled-wave analysis (RCWA). Numerical simulations show that the contrast of the Talbot images steadily decreases as the transmitted femtosecond laser pulses propagate forward and with wider spectrum width of the femtosecond laser pulses. The Talbot images of high-density gratings have much higher sensitivity of the spectrum widths of the incident laser pulses than those of the traditional low-density gratings. In experiments, the spectrums and the pulse widths of the incident pulses are measured with a frequency-resolved optical grating (FROG) apparatus. The Talbot images are detected by using a Talbot scanning near-field optical microscopy (Talbot-SNOM) technique, which are in coincidence with the numerical simulations. This effect should be useful for developing new femtosecond laser techniques and devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Immersion lithography has been considered as the mainstream technology to extend the feasibility of optical lithography to further technology nodes. Using proper polarized illumination in an immersion lithographic tool is a powerful means to enhance the image quality and process capability for high numerical aperture (NA) imaging. In this paper, the impact of polarized illumination on high NA imaging in ArF immersion lithography for 45 nm dense lines and semi-dense lines is studied by PROLITH simulation. The normalized image log slope (NILS) and exposure defocus (ED) window are simulated under various polarized illumination modes, and the impact of polarized illumination on image quality and process latitude is analyzed. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A scheme using a lens array and the technique of spectral dispersion is presented to improve target illumination uniformity in laser produced plasmas. Detailed two-dimensional simulation shows that a quasi-near-field target pattern, of steeper edges and without side lobes, is achieved with a lens array, while interference stripes inside the pattern are smoothed out by the use of the spectral dispersion technique. Moving the target slightly from the exact focal plane of the principal focusing lens can eliminate middle-scale-length intensity fluctuation further. Numerical results indicate that a well-irradiated laser spot with small nonuniformity and great energy efficiency can be obtained in this scheme. (c) 2007 American Institute of Physics.
Resumo:
Broad bandwidth group match conditions are reported for a noncollinear type I optical parametric process. The theoretical calculations corresponding to two special situations in practice were made, respectively, which are in accordance with the published experimental results. Furthermore, we provide a method to not only achieve maximal parametric bandwidth output but also match the group velocities between three waves. (c) 2006 Optical Society of America.
Resumo:
Based on the 2 x 2 (electric field) cross-spectral density matrix, a model for an electromagnetic J(0)-correlated Schell-model beam is given that is a generalization of the scalar J(0)-correlated Schell-model beam. The conditions that the matrix for the source to generate an electromagnetic J(0)-correlated Schell-model beam are obtained. The condition for the source to generate a scalar J(0)-correlated Schell-model beam can be considered as a special case. (C) 2008 Optical Society of America
Resumo:
Defects in as-grown U3+ : CaF2 crystals grown with or without PbF2 as an oxygen scavenger were studied using Raman spectra, thermoluminescence glow curves, and additional absorption (AA) spectra induced by heating and gamma-irradiation. The effects of heating and irradiation on as-grown U3+: CaF2 crystals are similar, accompanied by the elimination of H-type centers and production of F-type centers. U3+ is demonstrated to act as an electron donor in the CaF2 lattice, which is oxidized to the tetravalent form by thermal activation or gamma-irradiation. In the absence of PbF(2)as an oxygen scavenger, the as-grown U3+:CaF2 crystals contain many more lattice defects in terms of both quantity and type, due to the presence of O2- impurities. Some of these defects can recombine with each other in the process of heating and gamma-irradiation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Thin films of ZrO2, HfO2 and TiO2 were deposited on kinds of substrates by electron beam evaporation (EB), ion assisted deposition (IAD) and dual ion beam sputtering (DIBS). Then some of them were annealed at different temperatures. X-ray diffraction (XRD) was applied to determine the crystalline phase and the grain size of these films, and the results revealed that their microstructures strongly depended on the deposition conditions such as substrate, deposition temperature, deposition method and annealing temperature. Theory of crystal growth and migratory diffusion were applied to explain the difference of crystalline structures between these thin films deposited and treated under various conditions. (c) 2007 Elsevier B.V. All rights reserved.