357 resultados para Horizontal well
Resumo:
Pathogenic conformational conversion is a general causation of many disease, such as transmissible spon- giform encephalopathy (TSE) caused by misfolding of prion, sickle cell anemia, and etc. In such structural changes, misfolding occurs in regions important for the stability of native structure firstly. This destabi- lizes the normal conformation and leads to subsequent errors in folding pathway. Sites involved in the first stage can be deemed switch regions of the protein, and are vital for conformational conversion. Namely it could be a switch of disease at residue level. Here we report an algorithm that can identify such sites computationally with an accuracy of 93%, by calculating the probability of the native structure of a short segment jumping to a mistake one. Knowledge of such switch sites could be used to target clinical therapy, study physiological and pathologic mechanism of protein, and etc.
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
In this paper we investigated the responses of saturated sand under horizontal vibration loading induced by a bucket foundation. It is shown that the saturated sand liquefies gradually since the vibration loading is applied on. The maximum displacement on the surface of sand layer occurs near the loading end and in this zone the sand is compressed and moves upwards. The liquefaction zone is developed from the upper part near the loading side and stopped gradually.
Resumo:
Abstract: Experiments to determine the horizontal static bearing capacity are carried out first. The static bearing capacity is a reference for choosing the amplitudes of dynamic load. Then a series of experiments under dynamic horizontal load are carried out in laboratory to study the influences of factors, such as the scales of bucket, the amplitude and frequency of load, the density of soils etc.. The responses of bucket foundations in calcareous sand under horizontal dynamic load are analyzed according to the experimental results. The displacements of bucket and sand layer are analyzed.
Resumo:
We investigate the enhancement of Kerr nonlinearity in an asymmetric GaAs double quantum well via Fano interference, which is caused by tunneling from the excited subband to the continuum. In our structure, owing to Fano interference, the Kerr nonlinearity can be enhanced by appropriately choosing the values of the detunings and the intensity of the pump field, while cancel the linear and nonlinear absorptions.
Resumo:
We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.
Resumo:
We investigate the carrier-wave Rabi flopping effects in an asymmetric semiparabolic semiconductor quantum well (QW) with few-cycle pulse. It is found that higher spectral components of few-cycle ultrashort pulses in the semiparabolic QW depend crucially on the carrier-envelope phase (CEP) of the few-cycle ultrashort pulses: continuum and distinct peaks can be achieved by controlling the CEP. Our results demonstrate that by adjusting the CEP of few-cycle ultrashort pulses, the intersubband dynamics in the asymmetric semiparabolic QW can be controlled in an ultrashort timescale with moderate laser intensity. (c) 2008 Optical Society of America.
Resumo:
We propose an asymmetric double AlGaAs/GaAs quantum well structure with a common continuum to generate a large cross-phase modulation (XPM). It is found, owing to resonant tunneling, that a large XPM can be achieved with vanishing linear and two-photon absorptions. (c) 2007 Optical Society of America.
Resumo:
从靶场反射镜架模块的机械结构设计布局所需几何空间的角度出发,根据大口径、列阵器件的特殊要求,给出符合“神光Ⅲ”装置总体技术要求的ICF靶场光束口径与列阵间隔之间的关系,得出靶场△纵、△横应满足的公式.
Resumo:
A spin-injection/-detection device has been fabricated based on the multiple quantum well light emitting diode (LED) structure. It is found that only a broad electroluminescence (EL) peak of a full width at half maximum of 8.6 nm appears at the wavelength of 801 nm in EL spectra with a circular luminescence polarization degree of 18%, despite PL spectra always show three well resolved peaks. The kinetic energy gained by injected electrons and holes in their drift along opposite directions broadens the EL peak, and makes three EL peaks converge together. The same process also destroys the injected spin polarization of electrons mainly dominated by the Bir-Aronov-Pikus spin relaxing mechanism.
Resumo:
Using effective-mass Hamiltonian model of semiconductors quantum well structures, we investigate the electronic structures of the Gamma-conduction and L-conduction subbands of GeSn/GeSiSn strained quantum well structure with an arbitrary composition. Our theoretical model suggests that the band structure could be widely modified to be type I, negative-gap or indirect-gap type II quantum well by changing the mole fraction of alpha-Sn and Si in the well and barrier layers, respectively. The optical gain spectrum in the type I quantum well system is calculated, taking into account the electrons leakage from the Gamma-valley to L-valley of the conduction band. We found that by increasing the mole fraction of alpha-Sn in the barrier layer and not in the well layer, an increase in the tensile strain effect can significantly enhance the transition probability, and a decrease in Si composition in the barrier layer, which lowers the band edge of Gamma-conduction subbands, also comes to a larger optical gain.
Resumo:
The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.