60 resultados para Hardness testing
Resumo:
The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effect of implanting nitrogen into buried oxide on the top gate oxide hardness against total irradiation does has been investigated with three nitrogen implantation doses (8 x 10(15), 2 x 10(16) and 1 x 10(17) cm(-2)) for partially depleted SOI PMOSFET. The experimental results reveal the trend of negative shift of the threshold voltages of the studied transistors with the increase of nitrogen implantation dose before irradiation. After the irradiation with a total dose of 5 x 10(5) rad(Si) under a positive gate voltage of 2V, the threshold voltage shift of the transistors corresponding to the nitrogen implantation dose 8 x 10(15) cm(-2) is smaller than that of the transistors without implantation. However, when the implantation dose reaches 2 x 10(16) and 1 x 10(17) cm(-2), for the majority of the tested transistors, their top gate oxide was badly damaged due to irradiation. In addition, the radiation also causes damage to the body-drain junctions of the transistors with the gate oxide damaged. All the results can be interpreted by tracing back to the nitrogen implantation damage to the crystal lattices in the top silicon.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
Basis path testing is a very powerful structural testing criterion. The number of test paths equals to the cyclomatic complexity of program defined by McCabe. Traditional test generation methods select the paths either without consideration of the constraints of variables or interactively. In this note, an efficient method is presented to generate a set of feasible basis paths. The experiments show that this method can generate feasible basis paths for real-world C programs automatically in acceptable time.
Resumo:
With the advancement in network bandwidth and computing power, multimedia systems have become a popular means for information delivery. However, general principles of system testing cannot be directly applied to testing of multimedia systems on account of their stringent temporal and synchronization requirements. In particular, few studies have been made on the stress testing of multimedia systems with respect to their temporal requirements under resource saturation. Stress testing is important because erroneous behavior is most likely to occur under resource saturation. This paper presents an automatable method of test case generation for the stress testing of multimedia systems. It adapts constraint solving techniques to generate test cases that lead to potential resource saturation in a multimedia system. Coverage of the test cases is defined upon the reachability graph of a multimedia system. The proposed stress testing technique is supported by tools and has been successfully applied to a real-life commercial multimedia system. Although our technique focuses on the stress testing of multimedia systems, the underlying issues and concepts are applicable to other types of real-time systems.
Resumo:
Nankai University
Resumo:
A simple method of testing deep aspheric surfaces is presented. The apparatus consists of a Twyman-Green interferometer and a liquid compensatory container. Two lenses, one with spherical surfaces and the other with a spherical surface and an aspheric surface, were tested by using this method. The device is very simple and easy to assemble. (C) 1998 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.
Resumo:
In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.