150 resultados para Geostophic current
Resumo:
Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.
Resumo:
This paper investigates the dependence of current-voltage characteristics of AlAs/In0.53Ga0.47As/InAs resonant tunnelling diodes (RTDs) on spacer layer thickness. It finds that the peak and the valley current density J in the negative differential resistance (NDR) region depends strongly on the thickness of the spacer layer. The measured peak to valley current ratio of RTDs studied here is shown to improve while the current density through RTDs decreases with increasing spacer layer thickness below a critical value.
Resumo:
A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector is proposed. In comparision with conventional i-CaN/n(+)-GaN structure, an additional thin p-GaN cap layer is introduced on the i-GaN(n(-)-GaN) in the new structure. The simulation results showed that the additional layer makes the dark current to decrease in the photodetector due to the increase of the Schottky barrier height. The effects of thickness and carrier concentration of p-GaN layer on the dark current of the photodetector were also studied. It is suggested that the dark current of the new structure device could be better reduced by employing p-GaN with higher carrier concentration as the cap layer.
Resumo:
We propose a spin current diode which can work even in a small applied bias condition (the linear-response regime). The prototypal device consists of a hornlike electron waveguide with Rashba spin-orbit interaction, which is connected to two leads with different widths. It is demonstrated that when electrons are incident from the narrow lead, the generated spin conductance fluctuates around a constant value in a wide range of incident energy. When the transport direction is reversed, the spin conductance is suppressed strongly. Such a remarkable difference arises from spin-flipped transitions caused by the spin-orbit interaction. (c) 2008 American Institute of Physics.
Resumo:
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
Resumo:
This paper studies the dependence of I - V characteristics on quantum well widths in AlAs/In0.53Ga0.47As and AlAs/In0.53Ga0.47As/InAs resonant tunnelling structures grown on InP substrates. It shows that the peak and the valley current density in the negative differential resistance region are closely related with quantum well width. The measured peak current density, valley current densities and peak-to-valley current ratio of resonant tunnelling diodes are continually decreasing with increasing well width.
Resumo:
The leakage mechanism of GaN-based p-i-n (p-AlGaN/i-GaN/n-GaN) UV detector has been investigated. With the same dislocation density, devices made from material with higher density of V-pits on surface produce larger leakage current. SEM images show that some V-pits penetrate into i-GaN layer, sometimes even the n-GaN layer. If p-ohmic contact metal (Ni/Au) deposits in the V-pits, Schottky contact would be formed at the interface of metal and i-GaN, or form ohmic contact at the interface of metal and n-GaN. The existence of parallel Schottky junction and ohmic contact resistance enhances the leakage current greatly.
Resumo:
We have grown resonant tunnelling diodes (RTDs) with different sized emitter prewells and without a prewell. The current-voltage (I-V) characteristics of them in different magnetic fields were investigated. Two important phenomena were observed. First, a high magnetic field can destroy the plateau-like structure in the I-V curves of the RTD. This phenomenon is ascribed to the fact that the high magnetic field will demolish the coupling between the energy level in the main quantum well and that in the emitter quantum well or in the prewell. Secondly, the existence and size of the prewell are also important factors influencing the plateau-like structure.
Resumo:
Current-voltage (I-V) characteristics of GaAs-based resonant tunneling diodes have been investigated in the presence of a perpendicular magnetic field. Electron resonant tunneling is strongly suppressed by the applied magnetic field, leading to peak current decreasing with increasing magnetic field. The observed plateau-like structures appear in negative differential resistance region on the I-V curves and are magnetic-field dependent. The plateau-like structures are due to the coupling between the energy levels in the emitter well and in the main quantum well. (C) 2004 American Institute of Physics.
Resumo:
The influence of a transverse magnetic field up to 13 T at 1.6 K on the current-voltage, I (V), characteristics of a doped GaAs/AlAs superlattice was investigated. Current hysteresis was observed in the domain formation regions of the I (V) at zero magnetic field while applied bias was swept in both up (0-6 V) and down (6-0 V) directions. The magnitude of current hysteresis was reduced and finally disappeared with increasing transverse magnetic field. The effect is explained as the modification of the current density versus electric field characteristic by transverse magnetic fields. Calculated results based on the tunnelling current formula in a superlattice support our interpretation.
Resumo:
We investigate a new structure of high-power 660-nm AlGaInP laser diodes. In the structure, a p-GaAs layer is grown on the ridge waveguide serving as the current-blocking layer, and nonabsorbing windows are only fabricated near the cavity facets to increase the catastrophic-optical-damage level. Stable fundamental mode operation was achieved at up to 80 mW without kinks, and the maximum output power was 184 mW at 22 degrees C. The threshold current was 40 mA.
Resumo:
We have studied the current-voltage properties of a double quantum dot (DQD) connected by leads in arrangements that vary from series to symmetrical parallel configurations, in the presence of strong intradot Coulomb interaction. The influences of the connecting configurations and the difference between dot levels on the magnitude and symmetry of the total current are examined. We find that the connecting configurations of the dots can determine the number of the current paths and in turn determine the magnitude of the current, while the coupling strengths between the dots and the leads together with the difference of dot levels determine the current-voltage symmetry. The negative differential conductance observed in serial DQD can be explained in terms of the reduction of the current paths. (c) 2005 American Institute of Physics.
Resumo:
1.5 mu m. n-type modulation-doping InGaAsP/InGaAsP strained multiple quantum wells grown by low pressure metalorganic chemistry vapor decomposition technology is reported for the first time in the world. N-type modulation-doped lasers exhibit much lower threshold current densities than conventional lasers with undoped barrier layers. The lowest threshold current density we obtained was 1052.5 A/cm(2) for 1000 mu m long lasers with seven quantum wells. The estimated threshold current density for an infinite cavity length was 94.72A/cm(2)/well, reduced by 23.3% compared with undoped barrier lasers. The n-type modulation doping effects on the lasing characteristics in 1.5 mu m devices have been demonstrated.
Resumo:
We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.
Resumo:
Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.