52 resultados para Frequency domain model
Resumo:
We present a study of magnetic anisotropy by using magneto-transport and direct magnetization measurements on tensile strained (Ga,Mn)As films. The magnetic easy axis of the films is in-plane at low temperatures, while the easy axis flips to out-of-plane when temperature is raised or hole concentration is increased. This easy axis reorientation is explained qualitatively in a simple physical picture by Zeners pd model. In addition, the magneto-crystalline anisotropic resistance was also investigated experimentally and theoretically based on the single magnetic domain model. The dependence of sheet resistance on the angle between the magnetic field and [1 0 0] direction was measured. It is found that the magnetization vector M in the single-domain state deviates from the external magnetic field H direction at low magnetic field, while for high magnetic field, M continuously moves following the field direction, which leads to different resistivity function behaviors.
Resumo:
A differential recursive scheme for suppression of Peak to average power ratio (PAPR) for Orthogonal frequency division multiplexing (OFDM) signal is proposed in this thesis. The pseudo-randomized modulating vector for the subcarrier series is differentially phase-encoded between successive components in frequency domain first, and recursion manipulates several samples of Inverse fast Fourier transformation (IFFT) output in time domain. Theoretical analysis and experimental result exhibit advantage of differential recursive scheme over direct output scheme in PAPR suppression. And the overall block diagram of the scheme is also given.
Resumo:
笔式用户界面软件以其自然、高效的交互方式,在很多领域中有着广泛的应用笔式用户界面软件具有以交互为中心、用户个性化需求高的特点,由此也决定了用户在软件设计中的主导地位“用户为中心的设计的关键问题在于,如何使用户的思想如实地反映到设计中通过建立笔式用户界面软件特征模型PUIDM(the domain model for pen—based user interface software),构造了一个连接用户与软件设计的平台.从上下文、软件实体、界面特征、体系结构等角度,对该模型的建立进行分析.并给出了相应的XML描述在此基础上,描述了用户使用该模型进行软件设计的过程实例表明,PUIDM能够正确引导用户进行设计,将用户意图充分地引入到软件设计和最终实现中,使软件满足可用性要求。
Resumo:
文本推理在自然语言处理的应用中占有极为重要的位置,本文介绍了基于知网的一种推理方法,该方法以语义网络的形式表示知网中的知识,利用“标记传递”实现推理。其特点是引入构造-融合模型的思想,动态生成知识结构,有引导地在文本词汇间建立推理路径。利用16种推理类的实例对其进行测试,结果表明在有足够上下文的条件下,该方法能够得出较为理想的推理,并且代价不高。
Resumo:
时域反射仪(TDR)与频率反射仪(FDR)是目前最为先进,并且最具有发展前途的土壤含水量测量仪器。有便利、快捷、准确的优点。介绍了6种基于TDR或FDR原理的仪器对黄绵土含水量进行试验标定的方法与结果。标定结果表明:仪器的测量值与烘干法的测量值之间有一定的差异,CS616和Trime-T3烘干法测定结果接近,但是其余的4种仪器测定值均高于烘干法测定值,在应用这些仪器测定土壤含水量时需要进行标定。
Resumo:
To save finite-difference time-domain(FDTD) computing time, several methods are proposed to convert the time domain FDTD output into frequency domain. The Padé approximation with Baker's algorithm and the program are introduced to simulate photonic crystal structures. For a simple pole system with frequency 160THz and quality factor of 5000,the intensity spectrum obtained by the Padé approximation from a 28-item sequence output is more exact than that obtained by fast Fourier transformation from a 220-item sequence output. The mode frequencies and quality factors are calculated at different wave vectors for the photonic crystal slab from a much shorter FDTD output than that required by the FFT method,and then the band diagrams are obatined. In addition,mode frequencies and Q-factors are calculated for photonic crystal microcavity.
Resumo:
We report on the performance of double sideband (DSB) modulated probe wave in Brillouin optical time domain analysis (BOTDA) distributed fiber sensor. Compared to single sideband (SSB)modulation, along the sensing fiber the pump depletion of DSB modulation is remarkably suppressed in time domain and also has a relatively narrower Brillouin gain spectrum in frequency domain. Both the theoretical simulation and the experimental results demonstrate that the DSB modulation provides potentially longer sensing distance and higher accuracy in measurement than the SSB modulation in the BOTDA distributed fiber sensor system.
Resumo:
环境和机器人自身的不确定性影响轮式移动机器人的轨迹跟踪控制性能,此时仅仅使用里程计往往不能正确表达机器人的状态信息。在无速度传感器的情况下,讨论了使用加速度传感器和位置传感器的输出实时估计轮式移动机器人的速度。首先使用滑模观测器进行里程计信号处理,然后对车体加速度信号进行带通滤波提取车体扰动信息,通过频域融合信号表达轮式移动机器人的速度,并针对正交轮式全方位移动机器人进行了轨迹跟踪控制研究。试验结果表明采用融合数据可以更准确提供机器人的状态信息并得到更好的控制性能。
Resumo:
A frequency domain electromagnetic (conductivity) method for near surface soundings at low frequencies is discussed in this thesis. Its elementary principle is to detect the conductivity of the earth by the secondary magnetic fields induced by a current dipole on the earth. According to the EM induction theory, a coil with alternating current on the earth will generate a magnetic field in whole space which is referred to as the primary field Hp. The primary field would induce secondary currents in the earth which go down to depth like a batch of smoking rings. These currents further produce secondary magnetic field Hs .The primary and secondary magnetic fields are collected together by a receiver coil. Generally speaking,the secondary magnetic field is a complicated function of coil spacing, transmitting frequency and earth conductivity. But at low induction numbers, the secondary field is deduced to as a simple function of frequency, spacing and conductivity. Especially the ratio of secondary to primary field shares a linear proportion to the apparent conductivity. The earth conductivity can be interpreted by proper inversions with the apparent conductivity. The method is discussed at three steps: (1)Derivation of primary and secondary magnetic fields arising from vertical and horizontal magnetic dipoles on the earth based on the basic EM induction theory. (2)Field techniques and equipment developed for the method. (3)An interpretation technique was introduced using a cumulative and relative response function. Finally a test example is presented for examining the effectiveness of the method.
Resumo:
The real earth is far away from an ideal elastic ball. The movement of structures or fluid and scattering of thin-layer would inevitably affect seismic wave propagation, which is demonstrated mainly as energy nongeometrical attenuation. Today, most of theoretical researches and applications take the assumption that all media studied are fully elastic. Ignoring the viscoelastic property would, in some circumstances, lead to amplitude and phase distortion, which will indirectly affect extraction of traveltime and waveform we use in imaging and inversion. In order to investigate the response of seismic wave propagation and improve the imaging and inversion quality in complex media, we need not only consider into attenuation of the real media but also implement it by means of efficient numerical methods and imaging techniques. As for numerical modeling, most widely used methods, such as finite difference, finite element and pseudospectral algorithms, have difficulty in dealing with problem of simultaneously improving accuracy and efficiency in computation. To partially overcome this difficulty, this paper devises a matrix differentiator method and an optimal convolutional differentiator method based on staggered-grid Fourier pseudospectral differentiation, and a staggered-grid optimal Shannon singular kernel convolutional differentiator by function distribution theory, which then are used to study seismic wave propagation in viscoelastic media. Results through comparisons and accuracy analysis demonstrate that optimal convolutional differentiator methods can solve well the incompatibility between accuracy and efficiency, and are almost twice more accurate than the same-length finite difference. They can efficiently reduce dispersion and provide high-precision waveform data. On the basis of frequency-domain wavefield modeling, we discuss how to directly solve linear equations and point out that when compared to the time-domain methods, frequency-domain methods would be more convenient to handle the multi-source problem and be much easier to incorporate medium attenuation. We also prove the equivalence of the time- and frequency-domain methods by using numerical tests when assumptions with non-relaxation modulus and quality factor are made, and analyze the reason that causes waveform difference. In frequency-domain waveform inversion, experiments have been conducted with transmission, crosshole and reflection data. By using the relation between media scales and characteristic frequencies, we analyze the capacity of the frequency-domain sequential inversion method in anti-noising and dealing with non-uniqueness of nonlinear optimization. In crosshole experiments, we find the main sources of inversion error and figure out how incorrect quality factor would affect inverted results. When dealing with surface reflection data, several frequencies have been chosen with optimal frequency selection strategy, with which we use to carry out sequential and simultaneous inversions to verify how important low frequency data are to the inverted results and the functionality of simultaneous inversion in anti-noising. Finally, I come with some conclusions about the whole work I have done in this dissertation and discuss detailly the existing and would-be problems in it. I also point out the possible directions and theories we should go and deepen, which, to some extent, would provide a helpful reference to researchers who are interested in seismic wave propagation and imaging in complex media.
Resumo:
In this paper, we apply the preconditioned conjugate gradient method to the solution of positive-definite Toeplitz systems, especially we introduce a new kind of co-circulant preconditioners Pn[ca] by the use of embedding method. We have also discussed the properties of these new preconditioners and proved that many of former preconditioners can be considered as some special cases of Pn[co\. Because of the introduction of co-circulant preconditioners pn[a>], we can greatly overcome the singularity caused by circulant preconditioners. We have discussed the oo-circulant series and functions. We compare the ordinary circularity with the co-circularity, showing that the latter one can be considered as the extended form of the former one; correspondingly, many methods and theorems of the ordinary circularity can be extended. Furthermore, we present the co-circulant decompositional method. By the use of this method, we can divide any co-circulant signal into a summation of many sub-signals; especially among those sub-signals, there are many subseries of which their period is just equal to 1, which are actually the frequency elements of the original co-circulant signal. In this way, we can establish the relationship between the signal and its frequency elements, that is, the frequency elements hi the frequency domain are actually signals with the period of 1 in the spatial domain. We have also proved that the co-circulant has already existed in the traditional Fourier theory. By the use of different criteria for constructing preconditioners, we can get many different preconditioned systems. From the preconditioned systems PN[
Resumo:
This paper presents a behavior model for PLL Frequency Synthesizer. All the noise sources are modeled with noise voltages or currents in time-domain. An accurate VCO noise model is introduced, including both thermal noise and 1/f noise. The behavioral model can be co-simulated with transistor level circuits with fast speed and provides more accurate phase noise and spurs prediction. Comparison shows that simulation results match very well with measurement results.
Resumo:
The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.
Resumo:
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u (i) , electric displacement D (i) and volume fraction rho (I) of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction rho (I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch.