113 resultados para Force de cisaillement
Resumo:
Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)
Resumo:
The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are studied, respectively. An instability number, eta, is defined, and the critical gap distance, g(cr), between the mainplate and the substrate is derived. According to the values of eta and g, the instability criteria of the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the bifurcation phenomena in the system are also analyzed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y(0c) at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y(0c) with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H* , the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.
Resumo:
The lift force on a spherical nanoparticle near a wall in micro/nanofluidics has not received
sufficient attention so far. In this letter the concentration of 200 nm particles is measured at
0.25–2.0 m to a wall in a microchannel with pressure-driven de-ionized water flow pressure
gradient 0–2000 kPa/m . The measured data show the influence of the lift force on the nanoparticle
concentration distribution. By introducing the Saffman lift force into the Nernst–Planck equation
near a wall, we find that the lift force is dominant at the range of 2
Resumo:
The fluid force coefficients on a transversely oscillating cylinder are calculated by applying two- dimensional large eddy simulation method. Considering the ‘‘jump’’ phenomenon of the amplitude of lift coefficient is harmful to the security of the submarine slender structures, the characteristics of this ‘‘jump’’ are dissertated concretely. By comparing with experiment results, we establish a numerical model for predicting the jump of lift force on an oscillating cylinder, providing consultation for revising the hydrodynamic parameters and checking the fatigue life scale design of submarine slender cylindrical structures.
Resumo:
The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha 7 helix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The single-layer and multilayer Sb-rich AgInSbTe films were irradiated by a single femtosecond laser pulse with the duration of 120 fs. The morphological feature resulting from the laser irradiation have been investigated by scanning electron microscopy and atom force microscopy. For the single-layer film, the center of the irradiated spot is a dark depression and the border is a bright protrusion; however, for the multilayer film, the center morphology changes from a depression to a protrusion as the energy increases. The crystallization threshold fluence of the single-layer and the multilayer films is 46.36 mJ/cm(2), 63.74 mJ/cm(2), respectively.
Resumo:
In this paper, the evolution of the gradient force pattern, focal shift, and focal switch induced by a three-portion pure phase-shifting apodizer is numerically investigated in detail. The results show that the proposed apodizer may induce tunable gradient force on the particles in the focal region, focal shift, and focal switch. By adjusting the geometrical parameters of the phase-shifting apodizer, multiple traps may occur with changeable distance between them, and the shape of the optical trap also evolves evidently. More interestingly, for certain geometrical parameters of the proposed apodizer, by changing the phase shift of inner annular portion, the considerable focal shift may occur with focal switch accompanying, which is discussed to show that this kind of apodizer may be a very promising method of transporting trapped particles. © 2005 Elsevier GmbH. All rights reserved.
Resumo:
In this comment, problems associated with an oversimplified FDTD based model used for trapping force calculation in recent papers "Computation of the optical trapping force using an FDTD based technique" [Opt. Express 13, 3707 (2005)], and "Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping" [Opt. Express 12, 2220 (2004)] are discussed. A more rigorous model using in Poynting vector is also presented.
Resumo:
We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].
Resumo:
Atomic force microscopy (AFM) measurements of nanometer-sized islands formed by 2 monolayers of InAs by molecular beam epitaxy have been carried out and the scan line of individual islands was extracted from raw AFM data for investigation. It is found that the base widths of nanometer-sized islands obtained by AFM are not reliable due to the finite size and shape of the contacting probe. A simple model is proposed to analyze the deviation of the measured value From the real value of the base width of InAs islands. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
A buoy as an offshore structure is often placed over a convex such as a caisson or a submerged island. The hydrodynamic fluid/solid interaction becomes more complex due to the convex compared with that on the flat. Both the buoy and the convex are idealized as vertical cylinders. Linear potential theory is used to investigate the response amplitude and the hydrodynamic force for a buoy over a convex due to diffraction and radiation in water of finite depth. These are derived from the total velocity potential. A set of theoretical added mass, damping coefficient, and exciting force expressions have been proposed. Analytical results of the response amplitude and hydrodynamic force are given. Finally, the numerical results show that the effect of the convex on the response amplitude and hydrodynamic force for the buoy is ignored if the size of the convex is relatively smaller.