38 resultados para Feline immunodeficiency virus
Resumo:
AIM: To identify the anti-human immunodeficiency virus type 1 (HIV-1) activities of alpha-momorcharin ( alpha-MMC) from Momordica charantia in acutely and chronically infected lymphocytes. METHODS: The anti-HIV activities of alpha-MMC were examined by 1) the inhibition of syncytia formation induced by HIV-1 III B; 2) reduction of p24 core antigen expression level and decrease in numbers of HIV antigen positive cells in acutely and chronically infected cultures. The cytotoxic effects of alpha-MMC was tested by trypan blue dye exclusion or colorimetric MTT assay. RESULTS: alpha-MMC was found to obviously inhibit HIV-1 III B-inducing C8166 syncytia formation and markedly reduced both expression of p24 core antigen and the numbers of HIV antigen positive cells in acutely but not chronically HTV-1-infected culture. The median effective concentration (EC50) in these assays were 0.016, 0.07, and 0.32 mg.L-1, respectively. CONCLUSION: alpha-MMC is a unique component of momorcharin with anti-HIV activity, and markedly inhibited HIV-1 replication in acutely but not chronically HIV-1-infected T-lymphocytes.
Resumo:
AIM: To study the interaction between human interleukin-16 (IL-16) and the receptor CD4 (T-lymphocyte differentiation antigen) of human immunodeficiency virus type 1 (HIV-1). METHODS: Two structurally con served regions (SCRs) of human IL-16 were built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of human interleukin-1 (HIL-4) and HIL-2 as the templates. The coordinates for amino-terminal residue sequence, carboxyl-terminal residue sequences, and cytoplasm loops were generated using Biopolymer's LOOP SEARCH algorithm. RESULTS: HIL-16 first formed a homodimer, then contacted with CD4 dimer further forming a dimeric complex. Subsequently, the dimeric complex constructed the tetrameric complex by two disulfide bridges between the cysteines of HIL-16 (Cys31-Cys31). CONCLUSION: The interaction model is useful to propose the action mechanism of HIL-16 and is beneficial for rational designing of novel anti-HIV drugs.
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
The chemokine receptor CCR5 is the receptor for several chemokines and major coreceptor for R5 human immunodeficiency virus type-1 strains entry into cell. Three-dimensional models of CCR5 were built by using homology modeling approach and 1 ns molecular dynamics (MD) simulation, because studies of site-directed mutagenesis and chimeric receptors have indicated that the N-terminus (Nt) and extracellular loops (ECLs) of CCR5 are important for ligands binding and viral fusion and entry, special attention was focused on disulfide bond function, conformational flexibility, hydrogen bonding, electrostatic interactions, and solvent-accessible surface area of Nt and ECLs of this protein part. We found that the extracellular segments of CCR5 formed a well-packet globular domain with complex interactions occurred between them in a majority of time of MID simulation, but Nt region could protrude from this domain sometimes. The disulfide bond Cys20-Cys269 is essential in controlling specific orientation of Nt region and maintaining conformational integrity of extracellular domain. RMS comparison analysis between conformers revealed the ECL1 of CCR5 stays relative rigid, whereas the ECL2 and Nt are rather flexible. Solvent-accessible surface area calculations indicated that the charged residues within Nt and ECL2 are often exposed to solvent. Integrating these results with available experimental data, a two-step gp120-CCR5 binding mechanism was proposed. The dynamic interaction of CCR5 extracellular domain with gp120 was emphasized. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new nortriterpenoid, 20-hydroxymicrandilactone D (1) and a novel lignan glycoside, lancilignanside A (2) were isolated from leaves and stems of Schisandra lancifolia, together with three known nortriterpenoids (3—5) and nine known phenolics (6—14). The structures of new compounds 1 and 2 were determined by detailed analysis of their 1D and 2D NMR spectra, and chemical evidences. In addition, compounds 1—2, 6—7, and 9—11 showed anti-human immunodeficiency virus (HIV)-1 activities with 50% effective concentration (EC50) in the range of 3.0—99.0m g/ml. Compound 12 was not bioactive in this assay with EC50 more than 200m g/ml.
Resumo:
Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals. Cellular & Molecular Immunology. 2005;2(4):289-293.
Resumo:
Detection of DNA is a very important task for molecular biology and biomedical field. We have investigated electrochemical behavior of double-stranded DNA and single-stranded DNA adsorbed on conducting polymer modified electrode in presence of cobalt complex. The possibility of using such electrode as gene detector is discussed.