154 resultados para Double Electron-Electron Resonance (DEER)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reproducible terahertz (THz) photocurrent was observed at low temperatures in a Schottky wrap gate single electron transistor with a normal-incident of a CH_3OH gas laser with the frequency 2. 54THz.The change of source-drain current induced by THz photons shows that a satellite peak is generated beside the resonance peak. THz photon energy can be characterized by the difference of gate voltage positions between the resonance peak and satellite peak. This indicates that the satellite peak exactly results from the THz photon-assisted tunneling. Both experimental results and theoretical analysis show that a narrow spacing of double barriers is more effective for the enhancement of THz response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper reports a method of depositing SiO2, SiNx, a:Si, Si3N4 and SiOxNy dielectric thin films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD) on InP, InGaAs and other compound semiconductor optoelectronic devices,and give a technology of depositing dielectric thin films and optical coatings by ECR CVD on Laser's Bars. The experiment results show the dielectric thin films and optical coatings are stable at thermomechanical property,optical properties and the other properties. In addition, the dielectric thin film deposition that there is low leakage current is reported for using as diffusion and ion implatation masks in the paper. In the finally, the dielectric film refractive index can be accurately controlled by the N-2/O-2/Ar gas flow rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed an experiment on near threshold double ionization of helium by 106 eV electron impact with an improved reaction microscope. In this experiment the momenta of three particles after ionization were measured, and the information on correlation of emitted electrons was obtained. Detailed descriptions of the experimental setup and the methods of reconstruction of electron momentum were given. We focused on the analysis of momentum and energy distributions and the angular correlation of the emitted electrons. The experimental results were compared with Wannier's prediction, and it was found that the experimental results showed some characteristic features predicted by Wannier theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.