155 resultados para Cyclic hardening and softening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-reversible and direct electrochemistry of cytochrome c (cyt. c) has been obtained at a novel electrochemical interface constructed by self-assembling gold nanoparticles (GNPs) onto a three-dimensional silica gel network, without polishing or any modification of the surface. A cleaned gold electrode was first immersed in a hydrolyzed sol of the precursor (3-mercaptopropyl)-trimethoxysilane to assemble three-dimensional silica gel, then the GNPs were chemisorbed onto the thiol groups of the sol-gel network and modified the kinetic barrier of this self-assembled silicate film. Cyclic voltammetry and AC impendance spectroscopy were performed to evaluate electrochemical properties of the as prepared interface. These nanoparticle inhibits the adsorption of cyt. c onto bare electrode and acts as a bridge of electron transfer between protein and electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical and electrogenerated chemiluminescence of Ru(bpy)(3)(2+) immobilized in {clay/Ru(bpy)(3)(2+)}(n) multilayer films by layer-by-layer assembly were investigated. The stable multilayer films of clay and Ru(bpy)(3)(2+) were assembled by alternate adsorption of negatively charged clay platelets and positively charged Ru(bpy)(3)(2+) from their aqueous dispersions. UV-vis spectroscopy, quartz crystal microbalance (QCM), cyclic voltammetry, and electrogenerated chemiluminescence (ECL) were used to monitor the immobilization of Ru( bpy)(3)(2+) and the regular growth of the {clay/Ru( bpy)(3)(2+)}(n) multilayer films. The multilayer films modified electrode was used for the ECL detection of tripropylamine ( TPA) and oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of TPA and oxalate, which mainly resulted from the contributing of clay nanoparticles with appreciable surface area, special structural features and unusual intercalation properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrooxidation of thionine on screen-printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen-printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 muM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF4, resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescent multilayers were fabricated by layer-by-layer deposition between europium-substituted heteropolytungstate K-13 [Eu(SiW11O39)(2)].28H(2)O (denoted ESW) and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on glassy carbon and quartz substrates. The resulting photoluminescent organic-inorganic hybrid multilayers were characterized by electrochemical impedance spectroscopy, UV-Vis absorption spectrometry, cyclic voltammetry and photoluminescence spectra. Electrochemical impedance spectroscopy, UV-Vis absorption spectrometry and cyclic voltammetry results demonstrated that the multilayers were regular growth each layer adsorption. The photoluminescent properties of the films at room temperature were investigated to show the characteristic Eu3+ emission pattern of D-5(0) --> (7) F-j.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of chlorpromazine (CPZ) with supported bilaver lipid (dipalmitoyphosphatidylcholine) membrane (s-BLM) on the glassy carbon electrode (GCE) was investigated using cyclic voltammetry and ac impedance spectroscopy. The experimental data, based on the voltammetric response of Ru(NH3)(6)(3+) associated with the oxidation of CPZ on the electrode, indicated that the interaction of CPZ with s-BLM was concentration and time dependant. The interaction between them could be divided into three stages by the concentration of CPZ: low, middle and high concentration. At the first stage, s-BLM was not affected by CPZ and the interaction was only a penetration of a small quantity of CPZ molecule into s-BLM. At the second stage, the defects formed in s-BLM due to the penetration of more CPZ molecule into s-BLM. At the last stage, a high CPZ:lipid ratio reached in s-BLM, resulting in the solubilization of s-BLM. The interaction time had different effect at three stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction mechanism between Eu3+ and microperoxidase-II (MP-11) in the aqueous solution was investigated using the UV-vis absorption spectroscopy, cyclic voltammetry and electrospray ionization mass spectrometry. It was found that one Eu3+ ion can coordinate with two carboxyl oxygen of two propionic acid groups of the heme group in the MP-11 molecule, leading the increase in the nonplanarity of the porphyrin ring and exposure degree of Fe(III) in the heme group. Therefore, the reversibility of the electrochemical reaction and the electrocatalytic activity of MP-11 for the reduction of oxygen are increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the controlled fabrication of ultrathin multilayer films consisting of tri-vanadium- substituted heteropolytungstate anions (denoted as P2W15V3) and a cationic polymer of quaternized poly (4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) (denoted as QPVP-Os) on the 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) surface based on layer-by-layer assembly. Cyclic voltammetry and UV-vis absorption spectrometry have been used to easily monitor the thickness and uniformity of thus-formed multilayer films. The V-centered redox reaction of P2W15V3 in the multilayer films can effectively catalyze the reduction of BrO3- and NO2-. The resulting P2W15V3/QPVP-Os multilayer film modified electrode behaves as a much promising electrochemical sensor because of the low overpotential for the catalytic reduction of BrO3- and NO2-, and the catalytic oxidation of ascorbic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 2,3,7,8,12,13,17,18-octakis(alkyl-thio)tetraazaporphyrins (H(2)OATTAP) with different alkyl chain lengths have been synthesized. Cyclic voltammetry and differential pulse voltammetry have been used to investigate the effect of the controlled lengths of the eight peripheral thioether tails on the redox behavior of the molecules. The electrochemical reduction of octakis(hexyl-thio)tetraazaporphyrins, MOHTTAP (where M = Cu, Ni), was studied in 1,2-dichloroethane at a platinum electrode. The Cu derivative was oxidized in one single-electron-transfer step to yield a pi-cation radical and reduced in three single-electron-transfer steps to yield a pi-anion radical, dianion and trianion, respectively. For the Ni derivative, electron transfer reactions involving both the central metal atom and the macrocyclic ring were observed. Electron transfer pathways are proposed based upon voltammetric and in situ spectroelectrochemical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the cyclic voltammetry and quartz crystal microbalance (QCM), the oxidation process and the electrodeposition behavior were studyied during the electrochemical oxidation of 2-mercaptobenzimidazol in aqueous solution. The E-pH diagram was also gained. These results showed the oxidation reaction was one electron reaction. The results from X-ray photoelectron spectrometry verified that the 2-mercaptobenzimidazol was oxidized to bisbenzimidazoyl disulfide.