225 resultados para Crystal atomic structure
Resumo:
For the first time, a high optical quality Yb3+-doped lutetium pyrosilicate laser crystal Lu2Si2O7 (LPS) was grown by the Czochralski (Cz) method. The segregation coefficient of ytterbium ion in Yb:LPS crystal detected by the inductively coupled plasma atomic emission spectrometer (TCP-AES) method is equal to 0.847. X-ray powder diffraction result confirms the C2/m phase monoclinic space group of the grown crystal and the peaks corresponding to different phases were indexed. The absorption and fluorescence spectra, as well as fluorescence decay lifetime of Yb3+ ion in LPS have been investigated. The absorption and fluorescence cross-sections of the transitions F-2(7/2) <-> F-2(5/2) of Yb3+ ion in LPS crystal have been determined. The advantages of the Yb:LPS crystal including high crystal quality, quasi-four-level laser operating scheme, high absorption cross-sections (1.33 x 10(-2) cm(2)) and particularly broad emission bandwidth (similar to 62 nm) indicated that the Yb:LPS crystal seemed to be a promising candidate used as compact, efficient thin chip lasers when LD is pumped at 940 and 980 nm due to its low-symmetry monoclinic structure and single crystallographic site. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.
Resumo:
The character of InAs quantum dots (QD) directly deposited on a combined InAlAs-GaAs (XML) strained buffer layer (SBL) has been investigated. This growth technique realizes high-density QD (5.88 x 10(10) cm(-2)) by changing the thickness of GaAs in InAlAs-GaAs SBL. The dependence of the density and the aspect ratio of QD on the GaAs thickness has been discussed in detail. The photoluminescence (PL) measurements demonstrate an obvious redshift with the increase of GaAs thickness. In addition, the deposition of InAs QDs grown on the combined InAlAs-GaAs SBL has an important effect of the QD properties. The ordered QD array can be observed from the sample deposited by atomic layer epitaxy, of which the PL peak shows an obvious redshift in comparison to the molecular beam epitaxy (MBE) QDs when the GaAs thicknesses are equal. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structure and magnetic properties of the RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds with the ScFe6Ga6-type structure have been studied. The stability of RCo5Ga7 is closely related with the ratio of the metal radii R-RE/R-(Co,R-Ga). With R-RE/R-(Co,R-Ga) less than or equal to 1.36, the compounds can be stabilized in the ScFe6Ga6-type structure. The lattice of RCo5Ga7 shrinks as the atomic order of R increases, and it is consistent with the lanthanide contraction. The structure analysis based on X-ray diffraction patterns reveals that in the orthorhombic RCo5Ga7 (Immm), R occupies the 2a site, and Co enters into the 8k and the 4h sites, and Ga is at the 4e, 4f, 4g, 4h and 8k sites. The interatomic distances and the coordination numbers of RCo5Ga7 are provided from the refinement results. The short interatomic distance (less than 2.480 Angstrom) between the Co ions results in the negative magnetic interaction, which does not favor ferromagnetic ordering. The magnetic moment of YCo5Ga7 is absent, and RCo5Ga7 (R = Tb, Dy, Ho and Er) may have long-range magnetic ordering with the paramagnetic Curie temperature lower than 5 K. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The defects in 3C-SiC film grown on (001) plane of Si substrate were studied using a 200 kV high-resolution electron microscope with point resolution of 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized in combination with the image contrast analysis to distinguish atoms of Si from C distant from each other by 0.109 nm in the [110] projected image. The principle of the image processing technique utilized and the related image contrast theory is briefly presented. The procedures of transforming an experimental image that does not reflect the crystal structure intuitively into the structure map and of identifying Si and C atoms from the map are described. The atomic configurations for a 30 degrees partial dislocation and a microtwin have been derived at atomic level. It has been determined that the 30 degrees partial dislocation terminates in C atom and the segment of microtwin is sandwiched between two 180 degrees rotation twins. The corresponding stacking sequences are derived and atomic models are constructed according to the restored structure maps for both the 30 degrees partial dislocation and microtwin. Images were simulated based on the two models to affirm the above-mentioned results.
Resumo:
The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High-mobility Al0.3Ga0.7N/AlN/GaN high electron mobility transistors (HEMT) structure has been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. Electron mobility of 2185 cm(2)/V s at room temperature and 15,400 cm(2)/V s at 80 K with 2DEG density of 1.1 X 10(13) cm(-2) are achieved. The corresponding sheet resistance of the HEMT wafer is 258.7 Omega/sq. The AlN interfacial layer between the GaN buffer and the AlGaN barrier layer reduces the alloy disorder scattering. X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements have been conducted, and confirmed that the wafer has a high crystal quality. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.
Resumo:
The mode edges of photonic crystal waveguide with triangular lattice based on a silicon-on-insulator slab are investigated by combination of the effective index method and two-dimensional plane wave expansion method. The variations of waveguide-mode edges with structure parameters of photonic crystal are deduced. When the ratio of the radius of air holes to the lattice constrant, r/Lambda, is fixed and the lattice constant of photonic crystal, Lambda, increases, the waveguide-mode edges shift to longer wavelengths. When Lambda is fixed and r/Lambda increases, the waveguide-mode edges shift to shorter wavelengths. Additionally, when r/Lambda and Lambda are both fixed, the radius of the two-row air holes adjacent to the waveguide increases, the waveguide-mode edges shift to shorter wavelengths.
Resumo:
Mosaic structure in InN layers grown by metalorganic chemical vapor deposition at various temperatures has been investigated by X-ray diffraction (XRD). With a combination of Williamson-Hall measurement and fitting of twist angles, it was found that variation of growth temperature from 450 to 550 degrees C leads to the variation of the lateral coherence length, vertical coherence length, tilt and twist of mosaic blocks in InN films in a, respectively, monotonic way. In particular, mosaic tilt increases whereas mosaic twist decreases with elevating temperature. Atomic force microscopy shows the morphological difference of the InN nucleation layers grown at 450 and 550 degrees C. Different coalescence thickness and temperature-dependent in-plane rotation of InN nuclei are considered to account for the XRD results. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on experimental results and theoretical analysis effects of the crystal structure on the optical and electrical properties of pyrite FeS2 films produced by thermally sulfurizing iron films at various temperatures have been systematically studied. The results indicate that the crystal structure and some related factors, such as the crystallization and the stoichiometry, remarkably influence the optical and electrical performances of the pyrite films. It is also shown that the preferred orientation of the crystal grain plays a major role in determining the crystal structure and the optical and electrical properties of the pyrite FeS2 films. Also we find that it is the crystal grains, rather than the particles that exercise a decisive influence on the electrical performance of pyrite films. (C) 2003 Elsevier Science B.V. All rights reserved.
Structure characteristics of InGaN quantum dots fabricated by passivation and low temperature method
Resumo:
Passivation and low temperature method was carried out to grow InGaN/GaN quantum dots (QDs). Atomic force microscope observations were performed to investigate the evolution of the surface morphology of the InGaN QDs superlattices with increasing the superlattices layer number. The result shows that the size of the QDs increases with increasing superlattices layer number. The QDs height and diameter increase from 18 and 50 run for the monolayer InGaN QDs to 37 and 80 urn for the four-stacked InGaN QDs layers, respectively. This result is considered to be due to the stress field from the sub-layer dots. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Multi-sheet InGaN/GaN quantum dots (QDs) were grown successfully by surface passivation processing and low-temperature growth in metalorganic chemical vapor deposition. This method based on the principle of increasing the energy barrier of adatom hopping by surface passivation and low-temperature growth, is quite different from present methods. The InGaN quantum dots in the first layer of about 40-nm-wide and 15-nm-high grown by this method were revealed by atomic force microscopy. The InGaN QDs in upper layer grew bigger. To our knowledge, the current-voltage characteristics of multi-sheet InGaN/GaN QDs were measured for the fist time. Two kinds of resonance-tunneling-current features were observed which were attributed to the low-dimensional localization effect. Some current peaks only appeared in positive voltage for sample due to the non-uniformity of the QDs in the structure. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A high density of 1.02 x 10(11) cm(-2) of InAs islands with In(0.15)Gao(0.85)As underlying layer has been achieved on GaAs (10 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 mum photoluminescence (PL) from InAs islands with In(0.15)Gao(0.85)As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2002 Elsevier Science B.V. All rights reserved.