388 resultados para Cavità Laser Fabry-Perot FEA Rumori Simulazione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of attosecond pulses in a two-level system with permanent dipole moment is investigated. It is shown due to the presence of permanent dipole moments, that the plateau of the high-order harmonic generation spectrum can be extended to X-ray range. Moreover, attosecond pulses with higher intensity can be synthesized by using both even and odd harmonics because of their quantum interference. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在用半导体激光器抽运的单包层掺Yb调Q光纤激光器中观察到了清晰稳定的自锁模脉冲序列。脉冲包络形状为调Q脉冲。每个锁模脉冲的幅值由其在调Q脉冲中的相应位置决定。经过分析,认为自相位调制是调Q光纤激光器中产生锁模的主要原因。自相位调制的存在使得光脉冲的频谱被展宽,当这种展宽和腔的模式间隔相差不多时,腔内的模式便能相互作用,直到它们之间产生一个固定的相位关系。也即形成锁模。在此基础上。去掉声光晶体,并用两个光栅作为腔镜,实现了全光纤法布里-珀罗(F-P)腔锁模光纤激光器。改变腔结构,分别采用光栅和光纤反射圈作为

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在神光Ⅱ第9路ICF高功率激光装置中,采用可调法布里-珀罗(F-P)滤波器对幅度调制效应进行补偿,根据补偿装置的技术要求,提出-种应用nm量级精度的电容式位移传感器对可调F-P滤波器间距稳定度进行监控的系统,详细论述了监控系统的结构与工作原理。给出了电容式位移传感器的驱动电路及数据处理与控制软件的设计方案,并对电容式位移传感器的精度进行了标定。实验结果表明,该位移监控系统能够使可调F—P滤波器的间距稳定度保持在15nm/h以内,使幅度调制效应的调制深度优于4%。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对多普勒激光雷达激光源短期频率漂移低于1 MHz的要求,设计了一种共焦干涉仪作为频率标准进行稳频。通过对三种不同材料制成的共焦法布里-珀罗(Fabry-Perot)干涉仪中心频率随温度漂移情况进行分析对比,选用零膨胀微晶玻璃材料制作共焦法布里-珀罗干涉仪,腔镜和隔离器通过光胶的方式进行组合,并且置于温控精度优于0.01 K的双层密封温控箱中。经过实验测量,共焦法布里-珀罗干涉仪的自由光谱范围为370 MHz,透射谱半峰全宽(FWHM)为1.7 MHz,精细度为220。采用该共焦干涉仪进行稳频,理论稳频精度可达0.15 MHz,满足激光多普勒雷达单频激光源的稳频要求。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用Pound-Drever-Hall技术,对用于多普勒测风雷达的种子注入激光器的主动激光器进行稳频,将其频率锁定在一个特殊设计的法珀腔上。该法珀腔总体采用零膨胀微晶玻璃材料制成,具有极高的温度稳定性。使用计算机采集鉴频信号并且进行处理。锁定后,1秒内激光器的相对频率漂移为±25kHz,一小时内的相对频率漂移为±55kHz,满足多普勒测风雷达的要求。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了使用法珀(Fabry-Perot,F-P)标准具作为频率标准的三种稳频方法,并且进行理论分析,分别得出了各种方法的鉴频曲线.通过对鉴频曲线进行比较发现边频锁定技术具有斜率大、信号强、控制范围广的优点,优于另外两种方法,是一种理想的激光稳频技术.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1550 nm AlGaInAs/InP long rectangle resonator lasers with three sides surrounded by SiO2 and p electrode layers are fabricated by planar technology, and room-temperature continuous-wave lasing is realized for a laser with a length of 53 mu m and a width of 2 mu m. Multiple peaks with wavelength intervals of Fabry-Perot mode intervals and mode Q factors of about 400 and a lasing mode with a Q factor over 8000 are observed from the lasing spectrum at threshold current. The numerical results of the FDTD simulation indicate that the lasing mode may be a whispering-gallery mode, which is a coupled mode of two high-order transverse modes of the waveguide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-mu m-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and -32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square microlasers by directly connecting an output waveguide to the resonators. The electrically injected InP/InGaAsP ETR and square resonator microlasers with a 2-mu m-wide output waveguide were fabricated by standard photolithography and inductively coupled plasma etching techniques. Room-temperature continuous-wave (CW) operations were achieved for the ETR microlasers with the side length from 10 to 30 mu m and the square resonator microlasers with the side length of 20 mu m. The output power versus CW injection current and the laser spectra are presented for an ETR microlaser up to 310 K and a square resonator microlaser to 305 K. The lasing spectra with mode wavelength intervals as that of whispering-gallery-type modes and Fabry-Perot modes are observed for two square lasers, which can lase at low temperature and room temperature, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new concept of frequency coherence in the frequency-time domain to describe the field correlations between two lightwaves with different frequencies. The coherence properties of the modulated beams from lightwave sources with different spectral widths and the modes of Fabry-Wrot (FP) laser are investigated. It is shown that the lightwave and its corresponding sidebands produced by the optical intensity modulation are perfectly coherent. The measured linewidth of the beat signal is narrow and almost identical no matter how wide the spectral width of the beam is. The frequency spacing of the adjacent FP modes is beyond the operation frequency range of the measurement instruments. In our experiment, optical heterodyne technique is used to investigate the frequency coherence of the modes of FP laser by means of the frequency shift induced by the optical intensity modulation. Experiments show that the FP modes are partially coherent and the mode spacing is relatively fixed even when the wavelength changes with ambient temperature, bias current and other factors. Therefore, it is possible to generate stable and narrow-linewidth signals at frequencies corresponding to several mode intervals of the laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directional emission triangle and square InGaAsP/InP lasers have been fabricated by standard photolithography, inductively coupled plasma etching technique combined with wet chemical etching process. In this article, the characteristics of the microcavity lasers are presented. For an equilateral triangle microcavity laser with the side length of 30 mu m, we got the laser spectra fitted very well with the mode wavelength formulate LIP to the 8(th) transverse mode at room temperature. But the laser spectra are usually more complex than the formulae for the lasers, especially for the lasers with a smaller side length. For a square microcavity laser with side length of 20 mu m, we observed the mode competition between the Fabry-Perot (FP) modes and Whispering-Gallery (WG) modes at 200K. The output spectra below the threshold have the mode interval of FP modes with a large mode interval, and the laser spectra agree very well with the WG modes, which have mode interval less than the FP modes. The output spectra are dominated by the FP modes below the threshold, because the FP modes have a higher output coupling efficiency than the WG modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The turn-on delay time jitter of four different unbiased gain-switched laser types is determined by measuring the temporal probability distribution of the leading edge of the emitted optical pulse. One single-mode 1.5-mu-m distributed feed-back laser and three multimode Fabry-Perot lasers emitting at 750 nm and 1.3-mu-m are investigated. The jitter is found to decrease for all lasers with increasing injection current. For multimode lasers it decreases from 8 ps excited slightly above threshold down to below 2 ps at three times the threshold current. The jitter of the distributed feedback (DFB) laser is a factor of 3-5 larger than the jitter of the three multimode lasers. A new model to predict the turn-on delay time jitter is presented and explains the experiments quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-dot laser diodes (QD-LDs) with a Fabry-Perot cavity and quantum-dot semiconductor optical amplifiers (QD-SOAs) with 7° tilted cavity were fabricated. The influence of a tilted cavity on optoelectronic active devices was also investigated. For the QD-LD, high performance was observed at room temperature. The threshold current was below 30 mA and the slope efficiency was 0.36 W/A. In contrast, the threshold current of the QD-SOA approached 1000 mA, which indicated that low facet reflectivity was obtained due to the tilted cavity design.A much more inverted carrier population was found in the QD-SOA active region at high operating current, thus offering a large optical gain and preserving the advantages of quantum dots in optical amplification and processing applications. Due to the inhomogeneity and excited state transition of quantum dots, the full width at half maximum of the electroluminescence spectrum of the QD-SOA was 81.6 nm at the injection current of 120 mA, which was ideal for broad bandwidth application in a wavelength division multiplexing system. In addition, there was more than one lasing peak in the lasing spectra of both devices and the separation of these peak positions was 6-8 nm,which is approximately equal to the homogeneous broadening of quantum dots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the mode behaviors for semiconductor lasers with an equilateral triangle resonator by deriving the mode field distribution and the eigenvalue equation. The eigenvalue equation shows that the longitudinal mode wavelength interval is equivalent to that of a Fabry-Perot cavity with the cavity length of 1.5a, where a is the side length of the equilateral triangle resonator. The transverse waveguiding is equivalent to as a strip waveguide with the width of root 3a/ 2, and the number of transverse modes supported by the resonator is limited by the total reflection condition on the sides of the equilateral triangle. Semiconductor microcavity laser with an equilateral triangle resonator is suitable to realize single mode operation, and the mode wavelength can be adjusted by changing the side length.