50 resultados para Analog to digital conversion
Resumo:
We report on the room-temperature continuous-wave (CW) operation of a Ho:YAlO3 laser that is resonantly end pumped at 1.94 mu m by a diode-pumped thulium-doped laser in the same host. Through the use of a 1 at % Ho3+-doped 20-mm-long YAlO3 crystal (b cut), the Ho:YAlO3 laser generated 1 W of linearly polarized (E//c) output at 2118 nm and 0.55 W of E//a output at 2128.5 nm for an incident pump power of 5 W, with an output coupler transmission of 14 and 3%, respectively. An optical-to-optical conversion efficiency of 20% and a slope efficiency of 33% were achieved at 2118 nm corresponding to an incident pump power.
Resumo:
We demonstrated continuous-wave ( CW) and Q-switched operation of a room-temperature Ho: YAlO3 laser that is resonantly end-pumped by a diode-pumped Tm: YLF laser at 1.91 mu m. The CW Ho: YAlO3 laser generated 5.5 W of linearly polarized (E parallel to c) output at 2118 nm with beam quality factor of M-2 approximate to 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1-mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode. (C) 2008 Optical Society of America.
Resumo:
We report on efficient actively Q-switched Ho: YAP laser double-pass pumped by a 1.91-mu m laser. At room temperature, when the incident pump power was 20.9 W, a maximum average output power of 10.9W at 2118 nm was obtained at the repetition rate of 10 kHz, and this corresponds to a conversion efficiency of 52.2% and a slope efficiency of 63.5%. Moreover, a maximum pulse energy of similar to 1.1 mJ and a minimum pulse width of 31 ns were achieved, with the peak power of 35.5 kW. (C) 2009 Optical Society of America
Resumo:
The Ho:YAP crystal is grown by the Czochralski technique. The room-temperature polarized absorption spectra of Ho:YAP crystal was measured on a c-cut sample with 1 at% holmium. According to the obtained Judd-Ofelt intensity parameters Omega(2) = 1.42 x 10(-20) cm(2), Omega(4) = 2.92 x 10(-20) cm(2), and Omega(6) = 1.71 x 10(-20) cm(2), this paper calculated the fluorescence lifetime to be 6 ms for I-5(7) -> I-5(8) transition, and the integrated emission cross section to be 2.24 x 10(-18) cm(2). It investigates the room-temperature Ho:YAP laser end-pumped by a 1.91-mu m Tm:YLF laser. The maximum output power was 4.1 W when the incident 1.91-mu m pump power was 14.4W. The slope efficiency is 40.8%, corresponding to an optical-to-optical conversion efficiency of 28.4%. The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.
Resumo:
By using a semiconductor saturable-absorber output coupler as a mode-locking device, we experimentally realized the operation of a diode-pumped passively mode-locked Nd:YVO4 laser. Stable laser pulses with duration of 2.3 ps were generated at the output power of about 1 W. With increasing the pump power to 9 W, the maximum mode-locked power of 1.7 W was obtained, which corresponds to a slope conversion efficiency of 44% and optical-to-optical conversion efficiency of 19%.
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
A Sb-mediated growth technique is developed to deposit Ge quantum dots (QDs) of small size, high density, and foe of dislocations. These QDs were grown at low growth temperature by molecular beam epitaxy. The photoluminescence and absorption properties of these Ge QDs suggest an indirect-to-direct conversion, which is in good agreement with a theoretical calculation. (C) 1998 American Institute of Physics. [S0003-6951(98)00420-3].
Resumo:
Small-size, high-density, and vertical-ordering Ge quantum dots are observed in strained Si/Ge short-period superlattices grown on Si(001) at low growth temperature by molecular-beam epitaxy. The photoluminescence (PL) peak position, the strong PL at room temperature, and the high exciton binding energy suggest an indirect-to-direct conversion of the Ge quantum dots. This conversion is in good agreement with the theoretical prediction. The characteristic of absorption directly indicates this conversion. The tunneling of carriers between these quantum dots is also observed. [S0163-1829(98)03515-2].
Resumo:
A new-style silica planar lightwave circuit (PLC) hybrid integrated triplexer, which can demultiplex 1490-nm download data and 1550-nm download analog signals, as well as transmit 1310-nm upload data, is presented. It combines SiO2 arrayed waveguide gratings (AWGs) with integrated photodetectors (PDs) and a high performance laser diode (LD). The SiO2 AWGs realize the three-wavelength coarse wavelength-division multiplexing (CWDM). The crosstalk is less than 40 dB between the 1490- and 1550-nm channels, and less than 45 dB between 1310- and 1490- or 1550-nm channels. For the static performances of the integrated triplexer, its upload output power is 0.4 mW, and the download output photo-generated current is 76 A. In the small-signal measurement, the upstream 3-dB bandwidth of the triplexer is 4 GHz, while the downstream 3-dB bandwidths of both the analog and digital sections reach 1.9 GHz.
Resumo:
A low-threshold passively continuous-wave (CW) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor saturable absorber mirror (SESAM). The threshold for continuous-wave mode-locked is relatively low, about 2.15 W. The maximum average output power was 2.12 W and the optical to optical conversion efficiency was about 32%. The pulse width was about 15 ps with the repetition rate of 105 MHz. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.
Resumo:
A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on an 880 nm LD pumped passive mode-locked TEM00 Nd:YVO4 laser based on a semiconductor saturable absorber mirror (SESAM) for the first time. When the incident pump power was 16 W, 4.76 W average output power of continuous-wave mode-locked laser with an optical-to-optical conversion efficiency of 30% was achieved. The repetition rate of mode-locked pulse was 80 MHz with 25 ps pulse width. The maximum pulse energy and peak power were 60 nJ and 2.4 kW, respectively.
Resumo:
New chiral ferrocenyldiphosphine ligands (R)-(S)-3 and (R)-(S)-4 were prepared. The ligands were employed in Ru(II) catalyzed asymmetric transfer hydrogenation of ketones to give corresponding secondary alcohols. Up to 99% conversion with 90% e.e. was obtained on Ru(DMSO)(4)Cl-2/4 in transfer hydrogenation of acetophenones with propan-2-ol. (C) 2003 Elsevier B.V. All rights reserved.