189 resultados para 302-M0004A
Resumo:
采用中频感应提拉法生长出Ce:Lu:Si2O7(Ce:LPS)晶体.通过x射线粉末衍射分析,晶体结构属单斜晶系的C21m空间群·光学显微镜下可观测到晶体的(110)解理.在室温下测试了Ce:LPS晶体的吸收光谱、激发光谱和发射光谱。结果表明,Ce:LPS晶体的吸收峰只有两个,分别位于302和349nm,且与激发峰的位置一致,归因于Ce^3+的4f^1→5d^1跃迁的特征吸收所致.发射光谱具有Ce^3+典型的双峰特征,经Gaussian多峰值拟合,带状谱是由384和407nm两个发射峰叠加而成,且后者的强度
Resumo:
用脉冲激光沉积法在Al2O3(0001)衬底上沉积了ZnO薄膜。衬底温度分别为300℃、400℃、500℃、600℃和700℃。利用X射线衍射(XRD)和光致发光谱(PL)对薄膜的结构和光学性能进行研究。X射线衍射的结果表明在不同温度下生长的ZnO薄膜均具有高度c轴择优取向,衬底温度400℃时,膜的应力较小质量较高。ZnO薄膜有很强的紫外发光峰,紫外发光峰的强度与衬底温度密切相关,并发现当衬底温度从300℃增到400℃时,紫外发射峰出现6nm的蓝移。
Resumo:
采用溶胶凝胶法在LiAlO2(302)衬底上制备了ZnO薄膜。用X射线衍射(XRD)和扫描电镜(SEM)对样品的结构和形貌进行了表征。XRD结果表明,随着热处理温度的升高(350℃、450℃、550℃、600℃、800℃),所得到的薄膜分别为单相ZnAl2O4(350℃),ZnAl2O4和ZnO的混合相(450℃)以及单相的ZnO(550℃、600℃、800℃),并且ZnO薄膜C轴择优取向的生长趋势随温度升高相应明显。SEM图像显示,随着热处理温度的升高,ZnO薄膜的粒径相应变大。
Resumo:
利用激光脉冲沉积(PLD)技术在(302)γ-LiAIO2衬底上成功生长了非极性的a面(112^-0)γZnO薄膜.衬底温度为350℃时,薄膜是混合取向(a向和C向),以c面ZnO为主,且晶粒尺寸分布很宽;提高温度达500℃,薄膜变为单一的(1120)取向,摇摆曲线半高宽O.65^o,晶粒尺寸分布趋窄,利用偏振透射谱可以明显看出其面内的各向异性.衬底温度650℃下制备的样品晶粒继续长大,虽然摇摆曲线半高宽变大,但光致发光谱(PL)带边发射峰半高宽仅为105meV,比在350℃,500℃下制备的样品小1/5
Resumo:
利用激光脉冲沉积(PLD)技术在(302)γ-LiAlO2衬底上成功生长了非极性的a面(1120)ZnO薄膜,光致发光谱(PL)带边发射峰半峰宽仅为115meV.研究了非极性ZnO薄膜光谱特性的面内各向异性,发现随着入射光偏振方向改变,在偏振透射光谱上,吸收边移动了20meV,这与A、B激子和C激子的能量差一致;而在拉曼光谱上,激发光偏振方向的改变导致E2模式的强度发生明显改变.
Resumo:
青藏高原为冷杉属(Abies)的多度中心,共分布有10种,9变种和4亚种。其中苍山冷杉复合体(Abies delavayi complex)包括3种,5变种和2亚种。它们的形态性状变异较小,且分布区重叠。迄今对该复合体的遗传多样性水平、分化程度以及进化历史仍缺乏了解。 本研究对苍山冷杉复合体的14个居群、302个个体进行取样,并对193个个体的母系遗传线粒体DNA nad1 intron2区和276个个体的父系遗传的叶绿体DNA trnS-trnG区进行了序列分析。该复合体的线粒体DNA nad1 intron2区的序列为675bp,其中有4个单碱基变异和1个插入/缺失,可分为6种线粒体单倍型。这14个居群的线粒体总核苷酸多态性(π)为0.00114,单倍型多态性(Hd)为0.627,居群间的遗传变异(FST)高达84.034%。叶绿体DNA trnS-trnG区的序列排列后为718bp,共有8个单碱基变异和4个插入/缺失,可分为12种叶绿体单倍型。这14个居群的总核苷酸多态性(π)为0.00116,单倍型多态性(Hd)为0.590,居群间的遗传变异(FST)为65.830%。以上结果显示苍山冷杉复合体居群间已经产生了强烈的遗传分化。叶绿体的3种主导单倍型(H1、H2和 H3)在YLXS、SKXS、GS和WX 4个居群中都有分布;而其它居群则只有主导单倍型(除SJLS外)中的1种或2种。造成边缘居群(如JZS)多样性较低的主要原因是冰期后群体在迁移过程中的遗传漂变和奠基者效应。根据谱系关系线粒体H1型和叶绿体H3型均为较古老的单倍型,线粒体和叶绿体的谱系关系均支持上述分析。 本研究初步推测青藏高原的东南部—横断山区(包括YLXS、SKXS、GS、WX、BMXS、ELS和EMS)可能为苍山冷杉复合体的冰期避难所,群体存在冰期后向西和向南扩张的过程。间冰期群体隔离和扩张过程中的奠基者效应是形成目前居群分化和遗传多样性分布格局的重要因素。
Resumo:
The spread of culture and language in human populations is explained by two alternative models: the demic diffusion model, which involves mass movement of people; and the cultural diffusion model, which refers to cultural impact between populations and in