201 resultados para 15-146
Resumo:
The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 mm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 mu m. (C) 2008 Optical Society of America.
Resumo:
文章对美国国家标准和技术研究所(NIST)最近公布的15个AES候选算法的基本设计思想作了简要介绍,同时也介绍了对这些算法的最新分析结果
Volcanic eruptions in the Longgang Volcanic Field, northeastern China, during the past 15 000 years.
Resumo:
We report VLBI observations of 15 EGRET-detected AGNs with European VLBI Network (EVN) at 5 GHz. All sources in the sample display core-jet structures.
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
本研究以长白山地区原始和次生的阔叶红松林为对象,在2007和2008年共建立了8种类型10块1 ha样地。通过野外调查和取样分析,得到各样地森林生态系统的植物、枯死物和土壤碳密度值,并结合采伐样地经营历史情况(采伐时间和强度),得到长白山地区原始阔叶红松林生态系统碳密度参考值和次生阔叶红松林生态系统碳密度对采伐强度和植被恢复时间的响应特征。在此基础上,通过建立阔叶红松林乔木碳密度与生态系统碳密度的回归关系,并结合露水河林业局3个时期(1987、1995和2003年)的小班数据和原始林碳密度参考值,估算露水河林业局林业用地3个时期和潜在的碳储量。主要研究结果如下: (1)原始阔叶红松林生态系统碳密度参考值:植被、枯死物、土壤和生态系统碳密度值分别为149.18±54.57、20.93±14.33、156.39±14.99、326.50±34.52 t•ha-1。其中下木层、乔木层碳密度分别是1.55±0.74,147.63±54.39 t•ha-1;粗木质残体和枯枝落叶碳密度分别是15.64±13.66、5.29±1.72 t•ha-1;0-50 cm的各层土壤碳密度分别为62.14±6.31、46.17±10.25、27.82±6.20、12.57±4.67、7.69±2.20 t•ha-1。 (2)原始阔叶红松林生态系统碳密度对采伐干扰的响应特征为:采伐干扰均会减少生态系统碳密度;其中植被碳库对采伐干扰最为敏感且碳密度值均减少,采伐强度直接决定植被碳密度的减少程度和恢复时间;枯死物碳库对采伐干扰最不敏感且碳密度值是先增加后减少,采伐强度和植被恢复时建群树种决定枯死物碳密度的变化程度;土壤碳库对高强度采伐干扰敏感,采伐强度决定土壤碳密度是否发生变化。 (3)估算露水河林业局林业用地在1987、1995、2003年和潜在的森林生态系统碳储量分别为29.58×106 t、27.55×106 t、30.46×106 t和38.75×106 t。