617 resultados para crystal growth
Resumo:
We have studied the effects of postgrowth rapid thermal annealing on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick InxGa1-xAs (x = 0, 0.1, and 0.2) overgrowth layer. At higher annealing temperature (T greater than or equal to 750 degreesC), the photoluminescence peak of InGaAs layer has been observed at lower-energy side of the InAs quantum-dot peak. In addition, the blueshift in photoluminescence (PL) emission energy is found to he similar for all samples with increasing the annealing temperature from 650 to 850 degreesC. However, the trend of narrowing of photoluminescence linewidth is significantly different for InAs quantum dots with different In mole fractions in InGaAs overgrowth layer. These results suggest that the intermixing in the lateral direction plays an important role in helping to understand the modification of optical properties induced by rapid thermal annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
1.35 mum photoluminescence (PL) with a narrow linewidth of only 19.2 meV at room temperature has been achieved in In0.5Ga0.5As islands structure grown on GaAs (1 0 0) substrate by solid-source molecular beam epitaxy. Atomic force microscopy (AFM) measurement reveals that the 16-ML-thick In0.5Ga0.5As islands show quite uniform InGaAs mounds morphology along the [ 1(1) over bar 0] direction with a periodicity of about 90 nm in the [1 1 0] direction. Compared with the In0.5Ga0.5As alloy quantum well (QW) of the same width, the In0.5Ga0.5As islands structure always shows a lower PL peak energy and narrower full-width at half-maximum (FWHM), also a stronger PL intensity at low excitation power and more efficient confinement of the carriers. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strained InAs nanostructures have been grown by solid-source molecular beam epitaxy in In0.52Al0.48As matrix on different InP substrate surfaces ((0 0 1) and (1 1 n)A/B (n = 1 - 5)). The morphology of the nanostructures was characterized using atomic force microscopy (AFM). The AFM results reveal interesting differences in the size, shape, and alignment of the nanostructures between different oriented surfaces. It was found that some faceted nanostructures tend to form on A-type surfaces, the shape and the alignment of these nanostructures show clear dependence on the substrate orientation. Samples grown on (0 0 1) and B-type surfaces showed preferentially dense round dots. Dots formed on (1 1 3)B, (1 1 3)B and (1 1 5)B surfaces have a higher dot density and size homogeneity, which shows a potential for the production of high-quality and customized self-assembled quantum dots for photonics applications. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low-temperature GaAs (LT-GaAs) epi-layers and on normal temperature GaAs buffer layers have been compared by transmission electron microscopy (TEM) and photoluminescence (PL) measurements. TEM evidences that self-organized QDs were formed with a smaller size and larger density than that on normal GaAs buffer layers. It is discussed that local tensile surface strain regions that are preferred sites for InAs islands nucleation are increased in the case of the LT-GaAs buffer layers due to exhibiting As precipitates. The PL spectra show a blue-shifted peak energy with narrower linewidth revealing the improvement of optical properties of the QDs grown on LT-GaAs epi-layers. It suggests us a new way to improve the uniformity and change the energy band structure of the InAs self-organized QDs by carefully controlling the surface stress states of the LT-GaAs buffers on which the QDs are formed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs nanostructures on (0 0 1)InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies of InAs nanostructures depend strongly on the underlying alloy. Through introducing a lattice-matched underlying InAlGaAs layer on InAlAs buffer layer, the InAs quantum dots (QDs) can be much more uniform in size and great improvement in PL properties can be attained at the same time. In particular, 1.55 mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (0 0 1)InP substrate with underlying InAlGaAs layer. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum dots (QDs) in InAlAs grown on (001) and (311)B InP substrates by molecular beam epitaxy (MBE) have been comparatively investigated. A correlated study of atomic force microscopy (AFM) and photoluminescence (PL) disclosed that InAs QDs grown on high-index InP substrates can lead to high density and uniformity. By introducing a lattice-matched InAlGaAs overlayer on InAlAs buffer, still more dense and uniform InAs QDs were obtained in comparison with InAs QDs formed with only InAlAs matrix. Moreover, two-dimensional well-ordered InAs dots with regular shape grown on (311)B InP substrates are reported for the first time. We explained this exceptional phenomenon from strain energy combined with kinetics point of view. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum wires (QWRs) embedded in In0.52Al0.48As, In0.53Ga0.47As, and (In0.52Al0.48As)(n)/(In0.53Ga0.47As)(m)-short-period-lattice matrices on InP(001) were fabricated with molecular beam epitaxy (MBE). These QWR lines are along [110], x 4 direction in the 2 x 4 reconstructed (001) surface as revealed with reflection high-energy electron diffraction (RHEED). Alignment of quantum wires in different layers in the InAs/spacer multilayer structures depends on the composition of spacer layers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Interdigital metal-semiconductor-metal (MSM) ultraviolet photoconductive detectors have been fabricated on undoped GaN films grown by molecular beam epitaxy (MBE), Response dependence on wavelength, applied current, excitation powers and chopper frequency has been extensively investigated. It is shown that the photodetector's spectral response remained nearly constant for wavelengths above the band gap and dropped sharply by almost three orders of magnitude for wavelengths longer than the band gap. It increases linearly with the applied constant current, but very nonlinearly with illuminating power. The photodetectors showed high photoconductor gains resulting from trapping of minority carriers (holes) at acceptor impurities or defects. The results demonstrated the high quality of the GaN crystal used to fabricate these devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Optical transient current spectroscopy (OTCS), photoluminescence (PL) spectroscopy and excitonic electroabsorption spectroscopy have been used to investigate the evolution of defects in the low-temperature grown GaAs/AlGaAs multiple quantum well structures during the postgrowth rapid thermal annealing. The sample was grown at 350 degrees C by molecular beam epitaxy on miscut (3.4 degrees off (001) towards (111)A) (001) GaAs substrate. After growth, the sample was subjected to 30s rapid thermal annealing in the range of 500-800 degrees C. It is found that the integrated PL intensity first decreases with the annealing temperature, then gets a minimum at 600 degrees C and finally recovers at higher temperatures. OTCS measurement shows that besides As,, antisites and arsenic clusters, there are several relatively shallower deep levels with excitation energies less than 0.3 eV in the as-grown and 500 degrees C-annealed samples. Above 600 degrees C, OTCS signals from As,, antisites and shallower deep levels become weaker, indicating the decrease of these defects. It is argued that the excess arsenic atoms group together to form arsenic clusters during annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Deep levels in undoped GaN materials grown by modified molecular beam epitaxy (MBE) are investigated by photoluminescence (PL) and optical quenching of photoconductivity measurements. A broad band which extends from 2.1 to 3.0 eV with a maximum at about 2.7 eV is observed, and four prominent quenching bands were found located at 2.18, 2.40, 2.71, and 2.78 eV above the valence band, respectively. These levels are attributed to four holes trap levels existence in the material. The defects cannot be firmly identified at present. (C) 2000 Elsevier Science B.V, All rights reserved.
Resumo:
Al-related DX-like centers were observed in n-type Al-doped ZnS1-xTex epilayers grown by molecular-beam epitaxy on GaAs substrates. The capacitance-voltage measurement, deep-level transient spectroscopy, and photoconductivity spectroscopy revealed that the behaviors of Al donors in ZnS1-xTex were similar to the so-called DX centers in AlxGa1-xAs. The optical ionization energies (E-i) and emission barriers (E-e) for the observed two Al-related DX-like centers were determined as E-i similar to 1.0 and 2.0cV and E-e similar to 0.21 and 0.39 eV, respectively. It was also shown that the formation of Al-related DX-like centers resulted in a significantly large lattice relaxation in ZnS1-xTex. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Swirl defects in dislocation-free Czochralski (CZ) silicon crystals have been investigated by preferential etching, transmission electron microscopy (TER I) and electron energy loss spectroscopy (EELS) mode of a scanning transmission electron microscope (STEM). Two kinds of Swirl defects have been found with a good correspondence between striated pattern consisting of hillocks and the buried micro-defects. The Swirl defects were identified as perfect dislocation loop cluster and tetrahedral precipitate, respectively. In addition, a kind of tiny micro-defects is found to be distributed preferentially in the vicinity of the Swirl pattern although there is no detectable correspondence between hillocks and the micro-defects. The energy-filtered images have been obtained by the plasma peaks at different parts of a coherent precipitate with the Si matrix. The experimental results show some indications of the existence of oxygen and carbon in the core of the precipitate and suggest that oxygen and carbon may play important roles in the formation of Swirl defect. (C) 2000 Elsevier Science B.V. All rights reserved.