474 resultados para Ac conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-standing conductive films of organic-inorganic hybrids were prepared employing the sol-gel process of (3-glycidoxypropyl)trimethoxysilane (GPTMS) and water-borne conductive polyaniline (cPANI) in water/ethanol solution. The hybrids displayed a percolation threshold for electrical conductivity at a volume fraction of 2.1% polyaniline (PANI); the maximum conductivity of the hybrids reached 0.6 S/cm. GPTMS showed good compatibility with water-borne cPANI during the sol-gel process, and freestanding conductive films were obtained at room temperature. Transmission electron microscopy images of the hybrids indicated that the cPANI was dispersed in the inorganic phase in nanoscale. Because of good confinement of cPANI chains in the inorganic network, water resistance of the hybrid films was significantly improved compared with that of pure cPANI; the electrical conductivity of the films kept stable for 6-7 days soaking in water, whereas it decreased sharply for 1 day soaking for the pure cPANI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using inorganic salts as raw materials and citric acid as complexing agent, spinel oxide ZnGa2O4 and Mn2+, Eu3+-doped ZnGa2O4 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), TG-DTA, FT-IR. and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 degreesC and pure ZnGa2O4 phase is obtained at 700 degreesC, which agrees well with the results of TG-DTA and FT-IR. In the crystalline ZnGa2O4, the Eu shows its characteristic red (615 nm, D-5(0)-F-7(2)) emission with a quenching concentration of 5 mol% (of Ga3+), and the Mn shows green emission (505 nm, T, A,) with a quenching concentration of 0.1 mol% (of Zn2+). The luminescence mechanism of ZnGa2O4:Mn2+/Eu3+ is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) in an emeraldine-base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI-CSA) and a matrix, polyamide-66, polyamide-11, or polyamide-1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10(-7) to 10(0) S/cm when the weight fraction of PANI-CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI-CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical resistivity of low-density polyethylene/carbon black composites irradiated by Co-60 gamma-rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure-specific volume-temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (Sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and Sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of lanthanide ions with a supported bilayer lipid (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) membrane (sBLM) was investigated by cyclic voltammetry and ac impedance spectroscopy in this paper, Lanthanide can affect the conformation of the supported bilayer lipid membrane and cause pore formation. Through the pores, Fe(CN)(6)(3) (4) can reach the electrode surface and show its redox behaviour. Furthermore the redox currents or Fe(CN)(6)(3) (4) increased with increasing concentration of lanthanides and leveled off at 1.2 muM for Eu3+. The interaction ability of three lanthanides with sBLM follows the sequence: Eu3+ > Tb3+ > La3+.