521 resultados para chemical vapor deposition processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure of GaN buffer layer grown on (111)MgAl2O4 substrate by metalorganic vapor phase epitaxy (MOVPE) was studied by transmission electron microscopy (TEM). It has been observed that the early deposition of GaN buffer layer on the substrate at a relatively low temperature formed a continual island-sublayer (5 nm thick) with hexagonal crystallographic structure, and the subsequent GaN buffer deposition led to crystal columns which are composed of nano-crystal slices with mixed cubic and hexagonal phases. After high-temperature annealing, the crystallinity of nano-crystal slices and island-sublayer in the buffer layer have been improved. The formation of threading dislocations in the GaN him is attributed not only to the lattice mismatch of GaN/MgAl2O4 interface, but also to the stacking mismatches at the crystal column boundaries. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two strong photoluminescence (PL) bands in the spectral range of 550-900 nm have been observed at room temperature from a series of a-SiOx:H films fabricated by plasma-enhanced chemical vapor deposition (PECVD) technique. One is composed of a main band in the red-light region and a shoulder; the other is located at about 850 nm, only found after 1170 degrees C annealing in N-2 atmosphere. In conjunction with infrared (IR) and micro-Raman spectra, it is thought that the two PL bands are associated with a-Si clusters in the SiOx network and nanocrystalline silicon in SiO2, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strong photoluminescence (PL) of SiOx:H prepared by plasma enhanced chemical vapor deposition has been systematically studied in conjunction with infrared and micro-Raman spectra. We have found that each PL spectrum is comprised of two Gaussian components, a main band and a shoulder. The main band might originate from amorphous silicon clusters embedded in die SiOx network, and its redshift with annealing temperature is due to expansion of the silicon clusters. The shoulder remains at about 835 nm in spite of the annealing temperature and possibly comes from luminescent defect centers. The enhanced PL spectra after 1170 degrees C annealing are attributed to the quantum confinement effects of nanocrystalline silicon embedded in the SiO2 matrix. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure, hydrogen bonding configurations and hydrogen content of high quality and stable hydrogenated amorphous silicon (a-Si:H) films prepared by a simple ''uninterrupted growth/annealing" plasma enhanced chemical vapor deposition technique have been investigated by Raman scattering and infrared absorption spectroscopy. The high stability a-Si:H films contain small amounts of a microcrystalline phase and not less hydrogen (10-16 at. %), particularly, the clustered phase hydrogen, Besides, the hydrogen distribution is very inhomogeneous. Some of these results are substantially distinct from those of conventional device-quality n-Si:H film or stable cr-Si:H films prepared by the other techniques examined to date. The stability of n-Si:H films appears to have no direct correlation with the hydrogen content or the clustered phase hydrogen concentration. The ideal n-Si:H network with high stability and low defect density is perhaps not homogeneous. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si-rich SiO2 films were deposited by plasma-enhanced chemical vapor deposition on the silicon substrates, and then implanted with 1 x 10(15) cm(-2) 400 keV Er ions. After annealing at 800 degrees C for 5 min the samples show room temperature luminescence around 1.54 mu m, characteristic of intra-4f emission from Er3+, upon excitation using an Ar ion laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of rapid thermal annealing (RTA) in a Nz ambient up to 900 degrees C has been investigated for GaN films grown on sapphire(0 0 0 1) substrates. Raman spectra, X-ray diffractometry and Hall-effect studies were performed for this purpose. The Raman spectra show the presence of the E-2 (high) mode and a shift in the wave number of this mode with respect to the annealing processing. This result suggests the presence and relaxation of residual stress due to thermal expansion misfit in the films which are confirmed by X-ray measurements and the structure quality of GaN epilayer was improved. Furthermore, the electron mobility increased at room temperature with respect to decrease of background electron concentration after RTA. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue LEDs grown on the nano-patterned sapphire substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlxGa1-xN layer was grown on sapphire substrate with GaN template by Metal Organic Chemical Vapor Deposition system (MOCVD). High temperature A1N (HT-A1N) interlayer was inserted between AlxGa1-xN layer and GaN template to solve the cracking problem that often appears on AlxGa1-xN surface when directly grown on high temperature GaN template. Optical microscope, scanning electron microscopy (SEM), atomic force microscope (AFM), high resolution x-ray diffraction (HRXRD) and cathodoluminescence (CL) were used for characterization. It was found that the cracking was successfully eliminated. Furthermore, the crystalline quality of AlxGa1-xN layer with HT-A1N interlayer was much improved. Interference fringes were found in the HRXRD images. CL test showed that yellow emission was much reduced for AlGaN layer with HT-A1N interlayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.