662 resultados para YB
Resumo:
The persistent photoconductivity(PPC) phenomena in n-type GaN Films grown by metalorganic chemical vapor deposition(MOCVD) have been studied. After using some testing and analysis methods, such as the double crystal X-ray diffraction(DCXRD), the photolumineseence(PL) spectra, etc, it is found that the issue which influences PPC in n-type GaN is not relative to the dislocations and yellow band (YB), and is caused by the doping level of Si most likely.
Resumo:
The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.
Resumo:
Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.
Resumo:
SOI based wrap-gate silicon nanowire FETs are fabricated through electron beam lithography and wet etching. Dry thermal oxidation is used to further reduce the patterned fins cross section and transfer them into nanowires. Silicon nanowire FETs with different nanowire widths varying from 60 nm to 200 nm are fabricated and the number of the nanowires contained in a channel is also varied. The on-current (I-ON) and off-current (I-OFF) of the fabricated silicon nanowire FET are 0.59 mu A and 0.19 nA respectively. The subthreshold swing (SS) and the drain induced barrier lowering are 580 mV/dec and 149 mVN respectively due to the 30 nm thick gate oxide and 1015 cm(-3) lightly doped silicon nanowire channel. The nanowire width dependence of SS is shown and attributed to the fact that the side-gate parts of a wrap gate play a more effectual role as the nanowires in a channel get narrower. It seems the nanowire number in a channel has no effect on SS because the side-gate parts fill in the space between two adjacent nanowires.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.