641 resultados para Sio2
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
We have investigated the damage for ZrO2/SiO2 800 nm 45 degrees high-reflection mirror with femtosecond pulses. The damage morphologies and the evolution of ablation crater depths with laser fluences are dramatically different from that with pulse longer than a few tens of picoseconds. The ablation in multilayers occurs layer by layer, and not continuously as in the case of bulk single crystalline or amorphous materials. The weak point in damage is the interface between two layers. We also report its single-short damage thresholds for pulse durations ranging from 50 to 900 fs, which departs from the diffusion-dominated tau(1/2)(p) scaling. A developed avalanche model, including the production of conduction band electrons (CBE) and laser energy deposition, is applied to study the damage mechanisms. The theoretical results agree well with our measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
设计和制备了全向高反膜SiO2/TiO2,研究了它在不同脉冲宽度、不同脉冲能量的飞秒激光作用下的破坏阈值和烧蚀深度.利用发展的抽运.探针方法,研究了抽运脉冲作用下材料中导带电子的超快激发和能量沉积过程,建立并求解了飞秒激光激发材料和材料的激发对抽运光自身反作用的耦合动力学模型.模型较好地揭示了材料破坏的激发过程.
Resumo:
We report on the damage threshold in CaF2 crystals induced by femtosecond laser at wavelengths of 800 nm and 400 nm, respectively. The dependences of ablation depths and ablation volumes on laser fluences are also presented. We investigate theoretically the coupling constants between phonon and conduction band electrons (CBE), and calculate the rates of CBE absorbing laser energy. A theoretical model including CBE production, laser energy deposition, and CBE diffusion is applied to study the damage mechanisms. Our results indicate that energy diffusion greatly influences damage threshold and ablation depth.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well. (c) 2005 Optical Society of America.
Resumo:
Ce3+ and B2O3 are introduced into erbium-doped Bi2O3-SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I-4(11/2) -> I-4(3/2) transition, and the emission intensity and bandwidth of the 1.5 mu m luminescence with the I-4(13/2) -> I-4(5/2) transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth-borate-silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd-Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+/Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+/Ce3+ codoped bismuth-silicate glasses, and it much improves the energy-transfer rate between Er3+ I-4(11/2)-I-4(13/2) and Ce3+ F-2(5/2) -> F-2(7/2), although there is an energy mismatch. (c) 2007 Optical Society of America.
Resumo:
利用飞秒激光振荡器产生的脉冲对镀有铬层的玻璃和石英基片进行微加工,发现两种样品表面均有波纹状的微突起结构产生。这些微突起结构离开样品表面的高度为10~300 nm不等,并且随着激光功率的增大而增加,在一定功率下达到饱和状态。它们的形貌、尺寸和高度取决于入射飞秒激光的能流以及飞秒脉冲的参数。通过化学方法证明了这些微突起结构是由玻璃和石英的主要成分SiO2组成的,并非样品表面的铬元素。此外,通过选取适当的飞秒激光功率和样品加工速度,制作了两种不同周期和线宽的光栅结构,显示出飞秒激光振荡器良好的加工性能。
Resumo:
Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.
Resumo:
多孔SiO2膜层经热处理后,具有很高的激光破坏阈值,但是结构中有许多Si-OH亲水基团,导致光学透过率受环境相对湿度的影响很大。实验目的是改善膜层内部结构,使膜层结构中的亲水基团转变为疏水基团。提高膜层的疏水性,增强膜层的透过率稳定性。系统地研究了膜层透过率随时间变化的规律,在氨气和六甲基二硅氮烷(HMDS)混合气氛下热处理膜层,处理后生成Si-O-Si(CH2)3非极性疏水基团,使膜层的疏水性大大提高,因而膜层的透过率稳定性有大幅度提高。稳定性的提高延长了膜层的寿命。处理后膜层的表面粗糙度良好,均方根表
Resumo:
利用溶胶-凝胶提拉方法在隔板玻璃表面涂制得到由TiO2与SiO2组成的λ/2-λ/4型宽光谱增透膜。通过溶胶粘度、凝胶时间及红外光谱等研究了TiO2涂膜溶胶的稳定性与相应膜层性能,测试了双层增透膜的透过率、抗高能氙灯辐照性能及使用性能等。结果表明,控制合适的原料配比、降低薄膜烘烤升温速率,可得到适于大面积涂膜的稳定TiO2溶胶,有效改善TiO2膜层质量;隔板玻璃表面增透膜在450-900nm光谱范围内平均透过率高达约98%,使“神光-Ⅱ”第九路主放大器的实际增益提高5.5%-6.5%且具有良好的抗高能氙灯
Resumo:
采用溶胶-凝胶方法制备(CH3)2Si(OC2H5)2预聚体涂膜液以及掺入SiO2悬胶体涂膜液改性,采用旋转法在掺钕磷酸盐激光玻璃棒端面涂制防潮膜,热处理后膜层固化。SiO2改性的CH3O防潮膜,热处理后的膜层耐摩擦性能明显改善。然后旋转涂制第二层多空性SiO2减反膜,涂膜胶体通过硅酸乙脂碱催化水解缩聚制得,减反膜的折射率为约1.25,玻璃棒涂膜后激光波长1053nm减少表面反射率6.5%-7.5%,双层膜激光破坏阈值12J/cm^2,1053nm/1ns,膜层表面粗糙度(RMS)2.523nm。直径20
Resumo:
分别通过引入甲基三乙氧基硅烷(MTES)、二甲基二乙氧基硅烷(DMDES)以及六甲基二硅氮烷(HMDS)组分对SiO2悬胶体进行改性,得到不同甲基化的多孔SiO2改性薄膜。研究了改性薄膜的光学稳定性,抗激光破坏性能以及机械抗擦性能。结果表明,HMDS改性薄膜的光学稳定性最好而机械抗擦性较弱,MTES与DMDES改性薄膜的光学稳定性较低而机械抗擦性良好且均与改性组分的含量有关,甲基化改性薄膜的抗激光破坏性能比未改性薄膜的有所降低。
Resumo:
Early glasses (about 1066 BC-220 AD) unearthed from Xinjiang of China were chemically characterized by using PIXE and ICP-AES. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system, K2O-SiO2 system, Na2O-CaO-SiO2 system and Na2O-CaO-PbO-SiO2 system. The results from the cluster analysis showed that some glasses had basically similar recipe and technology. The PbO-BaO-SiO2 glass and the K2O-SiO2 glass were thought to come from the central area and the south of ancient China, respectively. The part of the Na2O-CaO-SiO2 glass (including the Na2O-CaO-PbO-SiO2 glass) might be imported from Mesopotamia, while the other part might be locally produced. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The earliest Chinese ancient glasses before the West Han Dynasty (200 BC) from different regions are studied. The glass samples were unearthed from Hunan, Hubei, Yunnan, Sichuan, Guizhou, Guangdong and Xinjiang of China. The chemical composition of these glasses samples is analyzed by proton induced X-ray emission (PIXE) technique, energy dispersive X-ray fluorescence (EDXRF) method and inductively coupled plasma atomic emission spectrometry (ICP-AES). It is shown that the glass chemical compositions belong to barium-lead silicate BaO-PbO-SiO2, potash soda lime silicate K2O (Na2O)-CaO-SiO2 (K2O/Na2O > 1), soda potash lime silicate Na2O (K2O)-CaO-SiO2 (K2O/Na2O < 1) and potash silicate K2O-SiO2 glass systems, respectively. The origins of the earliest Chinese ancient glasses are discussed from the archaeological and historical points of view. These four types of Chinese ancient glasses were all made in Chinese territory using local raw materials. The glass preparation technology was related to the Chinese ancient bronze metallurgy and proto-porcelain glaze technology. The glass technology relationship between the East and the West is analyzed at the same time.