443 resultados para EXCITON CONFINEMENT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper. we investigate the influences of the initial nitridation of sapphire substrates on the optical and structural characterizations in GaN films. Two GaN samples with and without 3 min nitridation process were investigated by photoluminescence (PL) spectroscopy in the temperature range of 12-300 K and double-crystal X-ray diffraction (XRD). In the 12 K PL spectra of the GaN sample without nitridation, four dominant peaks at 3.476, 3.409 3.362 and 3.308 eV were observed, which were assigned to donor bound exciton, excitons bound to stacking faults and extended structural defects. In the sample with nitridation, three peaks at 3.453, 3.365. and 3.308 eV were observed at 12 K, no peak related to stacking faults. XRD results at different reflections showed that there are more stacking faults in the samples without nitridation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

nThermal processing of strained ln(0.2)Ga(0.8)As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It was found that rapid thermal annealing can improve the 77 K photoluminescence efficiency and electron emission from the active layer, due to removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of post-growth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excitation energies and electron impact excitation strengths from the ground states of Ni-, Cu- and Zn-like Au ions are calculated. The collision strengths are computed by a 213-levels expansion for the Ni- like Au ion, 405-levels expansion for the Cu-like Au ion and 229-levels expansion for the Zn-like Au ion. Configuration interactions are taken into account for all levels included. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbits are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. Excellent agreement is found when the results are compared with previous calculations and recent measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at similar to 380nm and a blue band centered at similar to 430nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zn-i) and Zn vacancy (V-Zn) level transition. A strong blue peak (similar to 435 nm) was observed in the PL spectra when the alpha(Cu) (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of alpha(Cu) and the sputtering power on the blue band was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Superconducting ECR ion source with Advanced design in Lanzhou (SECRAL) was successfully built to produce intense beams of highly charged ions for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis 3.6T at injection, 2.2T at extraction and a radial sextupole field of 2.0T at plasma chamber wall. A unique feature of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. During the ongoing commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.2kW and it turned out the performance is very promising. Some record ion beam intensities have been produced, for instance, 810e mu A of O7+, 505e mu A of Xe20+, 306e mu A of Xe27+, 21e mu A of Xe34+, 2.4e mu A of Xe38+ and so on. To reach better results for highly charged ion beams, further modifications such as an aluminium chamber with better cooling, higher microwave power and a movable extraction system will be done, and also emittance measurements are being prepared.