449 resultados para laser ceramics
Resumo:
A real-time, in situ fixing method by use of heating with a CO2 laser beam is suggested for thermal fixing of a small local hologram in the bulk of a Fe:LiNbO3 photorefractive crystal. For heating up to 100 degrees C-200 degrees C a volume with a shape similar to that of the laser beam a heat-guiding technique is developed. On the basis of the heat-transfer equations, different heating modes with or without metal absorbers for heat guiding-obtained by use of a continuous or pulsed laser beam are analyzed. The optimal mode may be pulsed heating with absorbers. On this basis experiments have been designed and demonstrated. It is seen that the fixing process with CO2 laser beam is short compared with the process by use of an oven, and the fixing efficiency is quite high. (C) 1998 Optical Society of America.
Resumo:
We propose a sinusoidal phase-modulating laser diode interferometer for measuring small angular displacement. The interferometer is based on a Fabry-Perot plate. It has a simple structure and is insensitive to external disturbance. Sinusoidal phase-modulating interferometry is used for improving the measurement accuracy. A charge-coupled device (CCD) image sensor is used for measuring the distance between the reflected beams from two faces of the Fabry-Perot plate. From the distance, the initial angle of incidence is calculated. Compared with Michelson interferometers and autocollimators, this interferometer has the advantage of compact size and simple structure. The numerical calculation and experimental results verify the usefulness of this novel interferometer. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The Lau cavity is the self-imaging cavity with a phase corrector under the Lau reimaging condition. The author proposes the use of the Lau cavity to utilize both the Talbot and the Lau effects for phase locking one-dimensional and two-dimensional diode-laser arrays into a single-lobe coherent beam. Analyses on the self-reproducing of a coherent lasing field and the reimaging of initial incoherent radiation are given.
Resumo:
In this paper, we describe a wide-angle laser beam scanner and the rigorous result of the wide-angle laser beam scanner was obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape was discussed. The distortion of the beam shape is varying with the different relative angles of the double prisms. According to the conservation of the energy, the distribution of the laser intensity is changed too. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Experimental results of the Talbot effect of an amplitude grating under femtosecond laser illumination are reported. Compared with Talbot image under continuous wave (CW) illumination, Talbot images under femtosecond laser illumination are different due to the wide spectral bandwidth and the Talbot images are more distorted at longer Talbot distances. The spectrums and the pulsewidths of femtosecond laser pulses are measured with the frequency-resolved optical gating (FROG) apparatus. Experimental results are in good agreement with the theoretical analysis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
When a Dammann grating is used to split a beam of femtosecond laser pulses into multiple equal-intensity beams, chromatic dispersion will occur in beams of each order of diffraction and with different scale of angular dispersion because the incident ultrashort pulse contains a broad range of spectral bandwidths. We propose a novel method in which the angular dispersion can be compensated by positioning an m-time-density grating to collimate the mth-order beam that has been split, producing an array of beams that are free of angular dispersion. The increased width of the compensated output pulses and the spectral walk-off effect are discussed. We have verified this approach theoretically and validated it through experiments. It should be highly interesting in practical applications of splitting femtosecond laser pulses for pulse-width measurement, pump-probe measurement, and micromachining at multiple points. (c) 2005 Optical Society of America.
Resumo:
The concept of femtosecond laser speckles is put forward. The theory of a speckle pattern in light of finite bandwidth is applied to describe femtosecond laser speckles. Basic representations of the contrast and the spectral correlation of femtosecond laser speckles are presented. The relationship between the speckle contrast and the bandwidth of a femtosecond laser is given. Experimental results are given that indicate an obvious difference between the speckle patterns produced by a continuous-wave laser and those produced by a femtosecond laser. (c) 2005 Optical Society of America
Resumo:
The interference patterns produced by Gaussian-shaped broad-bandwidth femtosecond pulsed laser sources are derived. The interference pattern contains both spatial and temporal properties of laser beam. Interference intensity dependent on the bandwidth of femtosecond laser are given. We demonstrate experimentally both the spatial and the temporal coherence properties of a Ti:sapphire femtosecond pulse laser, as well as its power spectrum by using a pinhole pair.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.