518 resultados para beam splitter
Resumo:
GaSb films with AlSb/GaSb compound buffer layers were grown by molecular beam epitaxy on GaAs (001) substrates. The crystal quality and optical properties were studied by high resolution transition electron microscopy and low temperature photoluminescence spectra (PL), respectively. It was found that the AlSb/GaSb compound buffer layers can restrict the dislocations into GaSb epilayers. The intensity of PL spectra of GaSb layer becomes large with the increasing the periods of AlSb/GaSb superlattices, indicating that the optical quality of GaSb films is improved.
Resumo:
Using gas-source molecular beam epitaxy, we have obtained high-quality GaInP and (AlGa)InP epilayers lattice-matched to (100) GaAs substrates. All grown layers exhibited mirror-like surfaces. For a 1.7 mum thick Ga0.5In0.5P film, the Hall electron mobility was 3400 and 30,000 CM2/V. s at 300 and 77 K, respectively. The luminescence wavelength of (AlxGa1-x)InP samples ranged from 680 nm (for GaInP) to 590 nm (for AlInP) at room temperature, and from 644 to 513 nm at 77 K. The multiple quantum well (MQW) structure with well width of 40 angstrom showed strong luminescence intensity with wavelength of 647 nm (300 K) or 622 nm (80 K). The satellite peaks can be detected in double-crystal X-ray (DCXR) diffraction measurements of the MQW samples, which indicates the perfect structural periodicity.
Resumo:
HF etching followed by relatively low temperature (almost-equal-to 600-degrees-C) pretreatment is shown to provide a suitable substrate for the heteroepitaxial growth of GaAs on Si(100) by CBE using TEGa and AsH3 as sources. Rutherford backscattering (RBS), photoluminescence (PL), transmission electron microscopy (TEM), and Raman measurements show the low-defect nature of the GaAs epilayer.
Resumo:
Many-beam dynamical simulations and observations have been made for large-angle convergent-beam electron diffraction (LACBED) imaging of crystal defects, such as stacking faults and dislocations. The simulations are based on a general matrix formulation of dynamical electron diffraction theory by Peng and Whelan, and the results are compared with experimental LACBED images of stacking faults and dislocations of Si angle crystals. Excellent agreement is achieved.
Resumo:
The Mass Analyzed Low Energy Dual Ion Beam Epitaxy (MALE-DIBE) system has been designed and constructed in our laboratory. We believe that the system, which was installed and came into full operation in 1988, is the first facility of this kind. With our system we have carried out studies, for the first time, on compound synthesis of GaN and CoSi2 epitaxial thin films. RHEED and AES results show that GaN films, which were deposited on Si and sapphire substrates, are monocrystalline and of good stoichiometry. To our knowledge, GaN film heteroepitaxially grown on Si. which is more lattice-mismatched than GaN on sapphire, has not been reported before by other authors. RBS and TEM investigations indicated a rather good crystallinity of CoSi2 with a distinct interface between CoSi2 and the Si substrate. The channelling minimum yield chi(min) from the Co profile is approximately 4%. The results showed that the DIBE system with simultaneous arrival of two beams at the target is particularly useful in the formation of novel compounds at a relatively low substrate temperature.
Resumo:
The design and characteristics of a dual ion beam epitaxy system (DIBE) are discussed. This system is composed of two beam lines, each providing a mass-separated ion beam converging finally with the other into the target chamber. The ions are decelerated and deposited on a substrate which can be heated to a temperature of 800-degrees-C. Currents of a few hundred microamperes are available for both beams and the deposit energies are in the range from tens to 1000 eV. The pressure of the target chamber during processing is about 7 x 10(-6) Pa. Preliminary experiments have proved that compound semiconductor materials such as GaN can be synthesized using the DIBE system.
Resumo:
Molecular beam epitaxy GaAs films on Si, with thicknesses ranging from 0.9-2.0-mu-m, were implanted with Si ions at 1.2-2.6 MeV to doses in the range 10(15)-10(16) cm-2. Subsequent rapid infrared thermal annealing was carried out at 850-degrees-C for 15 s in a flowing N2 atmosphere. Crystalline quality was analyzed by using Rutherfold backscattering/channeling technique and Raman scattering spectrometry. The experimental results show that the recrystallization process greatly depends on the dose and energy of implanted ions. Complete recrystallization with better crystalline quality can be obtained under proper implantation and subsequent annealing. In the improved layer the defect density was much lower than in the as-grown layer, especially near the interface.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.