566 resultados para self-organized InAs quantum dots
Resumo:
The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.
Resumo:
The shape of truncated square-based pyramid quantum dots (QDs) is similar to that of real QDs in experiments. The electronic band structures and optical gain of InAs1-xNx/GaAs QDs are calculated by using the 10-band k.p model, and the strain is calculated by the valence force field (VFF) method. When the top part of the QD is truncated, greater truncation corresponds to a flatter shape of the QD. The truncation changes the strain distribution and the confinement in the z direction. A flatter QD has a greater C1-HH1 transition energy, greater transition matrix element, less detrimental effect of higher excited transition, and higher saturation gain and differential gain. The trade-off between these properties must be considered. From our results, a truncated QD with half of its top part removed has better overall performance. This can provide guidance to growing QDs in experiments in which the proper growing conditions can be controlled to achieve required properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3143025]
Resumo:
Evolution of surface morphology and optical characteristics of 1.3-mu m In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photoluminescence (PL). After deposition of 16 monolayers (ML) of In0.5Ga0.5As, QDs are formed and elongated along the [110] direction when using sub-ML depositions, while large size InGaAs QDs with better uniformity are formed when using ML or super-ML depositions. It is also found that the larger size QDs show enhanced PL efficiency without optical nonlinearity, which is in contrast to the elongated QDs.
Resumo:
We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.
Resumo:
(In, Cr)As ferromagnetic semiconductor quantum dots (QDs) were grown by molecular beam epitaxy on GaAs (001) substrates. The growth temperature effects on structure and magnetism of the QDs were investigated systematically. The Cr(2+)3d(4) states and quantum confined effect are assumed to play an important role in the room-temperature ferromagnetism of (In, Cr)As QDs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Spontaneous emission from GaAs/AlGaAs quantum dots (QDs) embedded in photonic crystals with a narrow photonic band gap is studied theoretically. The results show that the decay lifetime is very sensitive to the sizes of QDs, and both inhibited and accelerated emission can occur, which had been indicated in a previous experiment. The Weisskopf-Wigner approximation, good for atoms and molecules, may be incorrect for QDs. A damped Rabi oscillation of the excited state with the transition frequency outside the photonic band gap may appear, which is impossible for atoms and molecules. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.
Resumo:
Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AlGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by I-V curve and electroluminescence, and a single sharp exciton emission line at 966nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80K
Resumo:
Two-photon excited fluorescence from CdSe quantum dots on a two-dimensional SiN photonic crystal surface is investigated by using a femtosecond laser. By using a photonic crystal, a 90-fold enhancement in the two-photon excited fluorescence in the vertical direction is achieved. This is the highest enhancement achieved so far in the two-photon excited fluorescence in the vertical direction. The mechanism of the enhancement for two-photon excited fluorescence from quantum dots on photonic crystals is analyzed.
Resumo:
We show that the Coulomb blockade in parallel dots pierced by magnetic flux Phi completely blocks the resonant current for any value of Phi except for integer multiples of the flux quantum Phi(0). This non-analytic (switching) dependence of the current on Phi arises only when the dot states that carry the current are of the same energy. The time needed to reach the steady state, however, diverges when Phi -> n Phi(0). Copyright (C) EPLA, 2009
Resumo:
The electronic structure of a diluted magnetic semiconductor (DMS) quantum dot (QD) is studied within the framework of the effective-mass theory. We find that the energies of the electron with different spin orientation exhibit different behavior as a function of magnetic field at small magnetic fields. The energies of the hole decreases rapidly at low magnetic fields and saturate at higher magnetic field due to the sp-d exchange interaction between the carriers and the magnetic ions. The mixing effect of the hole states in the DMS QD can be tuned by changing the external magnetic field. An interesting crossing behavior of the hole ground state between the heavy-hole state and the light-hole state is found with variation of the QD radius. The strength of the interband optical transition for different circular polarization exhibts quite different behavior with increasing magnetic field and QD radius.
Resumo:
Multilayer InGaN/GaN quantum dots (QDs) were grown on sapphire substrates through a three-dimensional growth mode, which was initiated by a special passivation processing introduced into the normal growth procedure. Surface morphology and photoluminescence properties of QDs with different stacking periods (from one to four) were investigated. The temperature dependences of the PL peak energies were found to show a great difference between two-layer and three-layer QDs. The fast redshift and the reversed sigmoidal temperature dependences of the PL energies for the former were attributed to the thermally activated carrier transfer from small to large dots. However, the increase of both the dot size and the spatial space among dots with the growing stacking periods reduced the carrier escape and retrapping. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We theoretically investigate the spin-dependent transport through Cd1-xMnxTe diluted magnetic semiconductor (DMS) quantum dots (QD's) under the influence of both the external electric field and magnetic field using the recursion method. Our results show that (1) it can get a 100% polarized electric current by using suitable structure parameters; (2) for a fixed Cd1-xMnxTe DMS QD, the wider the system is, the more quickly the transmission coefficient increases; (3) for a fixed system length, the transmission peaks of the spin-up electrons move to lower Fermi energy with increasing Cd1-xMnxTe DMS QD radius, while the transmission of the spin-down electrons is almost unchanged; (4) the spin-polarized effect is slightly increased for larger magnetic fields; (5) the external static electric field moves the transmission peaks to higher or lower Fermi energy depending on the direction of the applied field; and (6) the spin-polarized effect decreases as the band offset increases. Our calculated results may be useful for the application of Cd1-xMnxTe DMS QD's to the spin-dependent microelectronic and optoelectronic devices.