352 resultados para Laser induced
Resumo:
Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5 mu m x 800 mu m ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110mA and 10.5V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12 degrees and 32 degrees, respectively.
Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion
Resumo:
AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The transient optical nonlinearity of a nematic liquid crystal doped with azo-dye DR19 is examined. The optical reorientation threshold of a 25-mu m-thick planar-aligned sample of 5CB using a 50 ns pulse duration 532 nm YAG laser pulse is observed to decrease from 800 mJ/mm(2) to 0.6 mJ/mm(2) after the addition of 1 vol% azo dopant, a reduction of three orders of magnitude. When using a laser pulse duration of 10 ns, no such effect is observed. Experimental results indicate that the azo dopant molecules undergo photoisomerization from trans-isomer to cis-isomer under exposure to light, and this conformation change reorients the 5CB molecules via intermolecular coupling between guest and host. This guest-host coupling also affects the azo photoisomerization process.
Crystallization of amorphous Si films by pulsed laser annealing and their structural characteristics
Resumo:
Nanocrystalline silicon (nc-Si) films were prepared by pulsed laser annealed crystallization of amorphous silicon (alpha-Si) films on SiO2-coated quartz or glass substrates. The effect of laser energy density on structural characteristics of nc-Si films was investigated. The Ni-induced crystallization of the a-Si films was also discussed. The surface morphology and microstructure of these films were characterized by scanning electron microscopy, high-resolution electron microscopy, atomic force microscopy and Raman scattering spectroscopy. The results show that not only can the alpha-Si films be crystallized by the laser annealing technique, but also the size of Si nanocrystallites can be controlled by varying the laser energy density. Their average size is about 4-6 nm. We present a surface tension and interface strain model used for describing the laser annealed crystallization of the alpha-Si films. The doping of Ni atoms may effectively reduce the threshold value of laser energy density to crystallize the alpha-Si films, and the flocculent-like Si nanostructures could be formed by Ni-induced crystallization of the alpha-Si films.
Resumo:
Stochastic resonance (SR) induced by the signal modulation is investigated, by introducing the signal-modulated gain into a single-mode laser system. Using the linear approximation method, we detailedly calculate the signal-to-noise ratio (SNR) of a gain-noise model of the single-mode laser, taking the cross-correlation between the quantum noise and pump noise into account. We find that, SR appears in the dependence of the SNR on the intensities of the quantum and the pump noises when the correlation coefficient between both the noises is negative; moreover, when the cross-correlation between the two noises is strongly negative, SR exhibits a resonance and a suppression versus the gain coefficient, meanwhile, the single-peaked SR and multi-peaked SR occur in the behaviors of the SNR as functions of the loss coefficient and the deterministic steady-state intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.
Resumo:
The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.
Resumo:
When injected electrons in a quantum well first experience an intersubband relaxation process before their escaping by tunneling through a double-barrier structure behind, the magnetic suppression of intersubband LO or LA phonon scattering can give rise to a noticeable nonthermal occupation in higher-lying subbands. That is clearly verified by the relative intensity ratio of the interband photoluminescence spectra for E-2-HH1 and E-1-HH1 transitions. The observed phenomenon may provide an effective method for controlling intersubband scattering rate, a central issue in so-called quantum cascade lasers, and facilitating the population inversion between subbands in quantum wells.
Resumo:
High power and long lifetime have been demonstrated for a semiconductor quantum-dot (QD) laser with five-stacked InAs/GaAs QDs separated by an InGaAs strain-reducing layer (SRL) and a GaAs spacer layer as an active medium. The QD lasers exhibit a peak power of 3.6 W at 1080 nm, a quantum slope efficiency of 84.6%, and an output-power degradation rate of 5.6%/1000 h with continuous-wave constant-current operation at room temperature. A comparative reliability investigation indicates that the lifetime of the InAs/GaAs QD laser with the InGaAs SRL is much longer than that of a QD laser without the InGaAs SRL. This improved lifetime of the QD laser could be explained by the reduction of strain in and around InAs QDs induced by the InGaAs SRL. (C) 2001 American Institute of Physics.
Resumo:
We present a study on the facet damage profile of quantum cascade lasers (QCLs). Conspicuous cascade half-loop damage strips on front facet are observed when QCLs catastrophically failed. Due to the large difference on thermal conductivities between active region and the substrate, dominant heat is compulsively driven to the substrate. Abundant heat accumulation and dissipation on substrate build large temperature gradient and thermal lattice mismatch. Thermal-induced stress due to sequential mismatch leads to the occurrence of the multistep damages on front facet. Good agreement is achieved between the observed locations of damaged strips and the calculated results.
Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions
Resumo:
The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.
Resumo:
We report laser-generated plasmas in atmosphere with electrical spark generated by a synchronization circuit. The breakdown thresholds under the conditions that the electrical spark is used and not used are compared. The breakdown threshold has a distinct decrease after the electrical spark is used. Breakdown thresholds as a function of atmosphere pressure have also been measured at laser wavelengths 532 nm and 1064 rim for the laser pulse width of 15ns. We also discuss the principle and performances of the ionized atmosphere by Nd:YAG laser under the condition of electrical spark introduction. Multiphoton ionization and cascade ionization play important roles in the whole process of atmosphere ionization. The free electron induced by electrical spark can supply the initialization free electron number for multiphoton ionization and cascade ionization. A model for breakdown in atmosphere, which is in good agreement with the experimental results, is described.
Resumo:
The second-harmonic generation (SHG) from Si1-xGex alloy films has been investigated by near-infrared femtosecond laser. Recognized by s-out polarized SHG intensity versus rotational angle of sample, the crystal symmetry of the fully strained Si0.83Ge0.17 alloy is found changed from the O-h to the C-2 point group due to the inhomogeneity of the strain. Calibrated by double crystal X-ray diffraction, the strain-induced chi((2)) is estimated at 5.7 x 10(-7) esu. According to the analysis on p-in/s-out SHG, the strain-relaxed Si0.10Ge0.90 alloy film is confirmed to be not fully relaxed, and the remaining strain is quantitatively determined to be around 0.1%.
Resumo:
The nature of optical confinement in phase-locked laser arrays (PLLAs) with a mesa-stripe structure (MSS) has been studied. Two main mechanisms are distinguished, which are based on the variation of the waveguide effective refractive index due to MSS formation and on the refractive index modulation induced by the heating of the structure. Stable operation was achieved when either weak or strong optical coupling was realized in the PLLA. A phase-locked regime of radiation was obtained only for laser diodes with strong optical coupling. In the latter case the angle divergency was not greater than 2 degrees for the antisymmetric supermode emission from the PLLA.