493 resultados para photoluminescence spectrum
Resumo:
We have systematically studied the temperature dependent photoluminescence of a self-assembled In(Ga)As/GaAs quantum dot (QD) system with different areal densities from similar to 10(9) to similar to 10(11) cm(-2). Different carrier channels are revealed experimentally and confirmed theoretically via a modified carrier equation model considering a new carrier transfer channel, i.e. continuum states ( CS). The wetting layer is demonstrated to be the carrier quenching channel for the low-density QDs but the carrier transfer channel for the high-density QDs. In particular, for the InGaAs/GaAs QDs with a medium density of similar to 10(10) cm(-2), the CS is verified to be an additional carrier transfer channel in the low temperature regime of 10-60 K, which is studied in detail via our models. The possible carrier channels that act on different temperature regimes are further discussed, and it is demonstrated that density is not a crucial factor in determining the carrier lateral coupling strength.
Resumo:
We have investigated temperature dependent photoluminescence of both buried and surface self-assembled InAs/GaAs quantum dots with an areal density up to similar to 10(11)/cm(2). Different from the buried quantum dots, the peak energy of surface quantum dots shows a blueshift relative to the bulk material variation from 15 to 130K. Besides the line width and the integrated intensity both first decrease and then increase in this temperature interval. The observed phenomena can be explained by carrier trapping effects by some shallow localized centers near the surface quantum dots.
Resumo:
We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.
Resumo:
Plasmon resonance spectra of supported Ag nanoparticles are studied by depositing the particles on different substrates. It was found that the dielectric properties of the substrates have significant effects on the spectral line shape, except the resonance frequency. Beyond the plasmon resonance band, the spectral shape is mainly governed by the dielectric function, particularly its imaginary part, of the substrate. The plasmon resonance band, on the other hand, may be severely distorted if the substrate is absorbing strongly.
Resumo:
A liquid laser medium with a lifetime of 492 mu s and a fluorescent quantum efficiency of 52.5% has been presented by stably dispersing dimethyl dichorosilane-modified Nd2O3 nanoparticles in dimethylsulfoxide. Its optical properties and mechanism were investigated and explained by fluorescence resonance energy transfer theory. The calculation result shows that the quenching of Nd-III F-4(3/2)-> I-4(11/2) transition via O-H vibrational excitation can be eventually neglected. The main reason is that the silane-coupling agent molecules remove the -OH groups on Nd2O3 nanoparticles and form a protective out layer. (c) 2007 American Institute of Physics.
Resumo:
We report a novel technique to broaden and reshape the spectrum of picosecond laser pulse based on the seeder of gain switch laser diode and Yb(3+)-doped fiber amplifier (YDFA). From compensating the seed spectrum with the gain of YDFA, the seed pulse of 7 nm bandwidth is broadened to 20 nm, and the flat top spectral shape is obtained as well. A self-made fiber coupled tunable filter is used to realize the tunable output laser with the wavelength range from 1053 nm to 1073 nm and the line width of 1.4 nm.
Resumo:
We report on the experimental demonstration of a spectrum shaping filter, which is formed by inserting a fiber polarization controller (PC) in to a Sagnac loop. Pedestal free and narrow spectrum with line width at 1.4-1.7 nm is obtained, which is advantageous for further power amplification and effective frequency doubling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SPIE
Resumo:
On the basis of researchon the theory and mathe matics of interference data collection of the spatially modulated polarization interference imaging spectrometer designed by us, this paper mainly analyses and compares three different methods of spectrum reconstruction and interferogram processing. Specially, the authors introduce the nonparametric model of Music algorithm which is maturely used in power spectrum estimation into the spectrum reconstruction processing for the first time. This method prodigiously improves the resolution of reproduced spectrum, and provides a better math matic model for the improvement of resolving power in spectrum reproduction.
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.