227 resultados para two-dimensional photonic crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic Algorithms (GAs) were used to design triangular lattice photonic crystals with large absolute band-gap. Considering fabricating issues, the algorithms represented the unit cell with large pixels and took the largest absolute band-gap under the fifth band as the objective function. By integrating Fourier transform data storage mechanism, the algorithms ran efficiently and effectively and optimized a triangular lattice photonic crystal with scatters in the shape of 'dielectric-air rod'. It had a large absolute band gap with relative width (ratio of gap width to midgap) 23.8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By vertical sedimentation and oblique titration, silica microspheres were grown in different shapes of concave microzones that were etched on a (100) p-silicon substrate. Through scanning electron microscope observation and optical reflective spectra measurement, sedimentation of microspheres in those microzones was compared. An index was introduced to judge the efficiency of sedimentation. The comparison demonstrates that regular hexagons and triangles facilitate the growth of photonic crystals the most. (c) 2006 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benelits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(lambda/eta(slab))(3) for oscillation -mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3 mu m with a silicon-on-insulator (Sol) substrate is designed by the three-dimensional plane wave expansion method. For TE-like modes, the bandgap in the F-K direction is from 1087nm to 1559nm. The central wavelength in the bandgap is about 1.3 mu m, hence the incident light at wavelength 1.3 mu m will be strongly reflected. Experimentally, such a photonic crystal slab is fabricated on an SOI substrate by the combination of EBL and ICP etching. The measurement of its transmission characteristics shows the bandgap edge in a longer wavelength is about 1540mn. The little discrepancy between the experimental data and the theoretical values is mainly due to the size discrepancy of the fabricated air holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some progress in the research of GaN based LED with photonic crystal structure has been made recently. Based on the photonic crystal's photonic band gap effect and photon grating diffraction principle, the extraction efficiency of LED with photonic crystal can be improved. In this paper, the restriction on AlGaInP LED's extraction efficiency is analyzed, and the photonic crystal is introduced in to the AlGaInP LED to improve the extraction efficiency. The theoretical analyses and the experiment results show that the output luminous intensity of LED with photonic crystal is improved by 16%, which results from some effect of the GaN based LED with photonic crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inductively coupled plasma (ICP) etching of InP in Cl-2/BCl3 gas mixtures is studied in order to achieve low-damage and high-anisotropy etching of two-dimensional InP/InGaAsP photonic crystal. The etching mechanisms are discussed and the effect of plasma heating on wafer during etching is analyzed. It is shown that the balance between the undercut originating from plasma heating and the redeposition of sputtering on the side-wall is crucial for highly anisotropic etching, and the balance point moves toward lower bias when the ICP power is increased. High aspect-ratio etching at the DC bias of 203 V is obtained. Eventually, photonic crystal structure with nearly 90 degrees side-wall is achieved at low DC bias after optimization of the gas mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the transfer-matrix method to research the band structures in one-dimensional photonic crystals composed of anomalous dispersion material ( saturated atomic cesium vapor). Our calculations show that that type of photonic crystal possesses an ultra-narrow photonic band gap and this band gap is tunable when altering the electron population in the atomic ground state of the anomalous dispersion material by the optical pumping method. Copyright (C) EPLA, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of manufacturing two-dimensional photonic crystals on several kinds of semiconductor materials in near infrared region by a focused ion beam is introduced, and the corresponding fabrication results are presented and show that the obtained parameters of fabricated photonic crystals are identical with the designed ones. Using the tunable laser source, the spectra of the fabricated passive photonic crystal and the active photonic crystal are measured. The experiment demonstrates that the focused ion-beam can be used to fabricate the perfect two-dimensional photonic crystals and their devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional photonic crystals in near infrared region were fabricated by using the focused ion beam ( FIB) method and the method of electron-beam lithography (EBL) combined with dry etching. Both methods can fabricate perfect crystals, the method of FIB is simple,the other is more complicated. It is shown that the material with the photonic crystal fabricated by FIB has no fluorescence,on the other hand, the small-lattice photonic crystal made by EBL combined with dry etching can enhance the extraction efficiency two folds, though the photonic crystal has some disorder. The mechanisms of the enhanced-emission and the absence of emission are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-photon excited fluorescence from CdSe quantum dots on a two-dimensional SiN photonic crystal surface is investigated by using a femtosecond laser. By using a photonic crystal, a 90-fold enhancement in the two-photon excited fluorescence in the vertical direction is achieved. This is the highest enhancement achieved so far in the two-photon excited fluorescence in the vertical direction. The mechanism of the enhancement for two-photon excited fluorescence from quantum dots on photonic crystals is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.