89 resultados para triton binding energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are-given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these accepters is deviated from that given by the effective mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of accepters. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. [S0163-1829(99)15915-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To search for a high sensitivity sensor for formaldehyde (H2CO), We investigated the adsorption of H2CO on the intrinsic and Al-doped graphene sheets using density functional theory (DFT) calculations. Compared with the intrinsic graphene, the Al-doped graphene system has high binding energy value and short connecting distance, which are caused by the chemisorption of H2CO molecule. Furthermore, the density of states (DOS) results show that orbital hybridization could be seen between H2CO and Al-doped graphene sheet, while there is no evidence for hybridization between the H2CO molecule and the intrinsic graphene sheet. Therefore, Al-doped graphene is expected to be a novel chemical sensor for H2CO gas. We hope our calculations are useful for the application of graphene in chemical sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ionization rate of molecules in intense laser fields may be much lower than that of atoms with similar binding energy. This phenomenon is termed the ionization suppression of molecules and is caused by the molecular inner structure. In this paper, we perform a comprehensive study of the ionization suppression of homonuclear diatomic molecules in intense laser fields of linear and circular polarizations. We find that for linear polarization the total ionization rate and the ionization suppression depend greatly on the molecular alignment, and that for circular polarization the ionization suppression of molecules in the antibonding (bonding) shells disappears (appears) for laser intensities around 10(15) W/cm(2). We also find that the molecular photoelectron energy spectra are greatly changed by the interference effect, even though the total ionization rate of molecules remains almost the same as that of their companion atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The binding energy of an exciton bound to a neutral donor (D-0,X) in GaAs quantum-well wires is calculated variationally as a function of the wire width for different positions of the impurity inside the wire by using a two-parameter wavefunction. There is no artificial parameter added in our calculation. The results we have obtained show that the binding energies are closely correlated to the sizes of the wire, the impurity position, and also that their magnitudes are greater than those in the two-dimensional quantum wells compared. In addition, we also calculate the average interparticle distance as a function of the wire width. The results are discussed in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recombination kinetics of Te isoelectronic centers in ZnS1-xTex (0.0065 less than or equal to x less than or equal to 0.85) alloys is studied by time-resolved photoluminescence (TRPL) at low temperature. The measured radiative recombination lifetimes of different Te bound exciton states are quite different, varying from a few nanoseconds to tens of nanosecond. As the bound exciton state evolves from a single Te impurity (Te-1) to larger Te clusters (Te-n, n=2,3,4), the recombination lifetime increases. It reaches maximum (similar to40 ns) for the Te-4 bound states at x=0.155. The increase of the exciton lifetime is attributed to the increasing exciton localization effect caused by larger localization potential. In the large Te composition range (x > 0.155), the exciton recombination lifetime decreases monotonically with Te composition. It is mainly due to the hybridization between the Te localized states and the host valence band states. The composition dependences of the exciton binding energy and the photoluminescence (PL) line width show the similar tendency that further support the localization picture obtained from the TRPL measurement. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exponential degradation of the photoluminescence (PL) intensity at the near-band-gap was observed in heavily doped or low-quality GaN with pristine surface under continuous helium-cadmium laser excitation. In doped GaN samples, the degradation speed increased with doping concentration. The oxidation of the surface with laser irradiation was confirmed by x-ray photoemission spectroscopy measurements. The oxidation process introduced many oxygen impurities and made an increase of the surface energy band bending implied by the shift of Ga 3d binding energy. The reason for PL degradation may lie in that these defect states act as nonradiative centers and/or the increase of the surface barrier height reduces the probability of radiative recombination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a method for uniformly calculating the electronic states of a hydrogenic donor impurity in low-dimensional semiconductor nano-structures in the framework of effective-mass envelope-function theory, and we study the electronic structures of this systems. Compared to previous methods, our method has the following merits: (a) It can be widely applied in the calculation of the electronic states of hydrogenic donor impurities in nano-structures of various shapes; (b) It can easily be extended to study the effects of external fields and other complex cases; (c) The excited states are more easily calculated than with the variational method; (d) It is convenient to calculate the change of the electronic states with the position of a hydrogenic donor impurity in nano-structures; (e) The binding energy can be calculated explicitly. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.