108 resultados para strengthening mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress fields and failure mechanisms have been investigated in composites with particles either surface treated or untreated under uniaxial tension. Previous experimental observation of failure mechanisms in a composite with untreated particles showed that tensile cracks occurred mostly at the polar region of the particle and grew into interfacial debonding. In a composite with surface-treated particles, however, shear yielding and shear cracking proceeded along the interphase-matrix interface at the polar area of the matrix and thus may improve the mechanical behaviour of the material. The finite element calculations showed that octahedral shear stress at the polar and longitudinal areas of the particle treated by coupling agents is much larger than that of materials with untreated particles, and the shear stress distribution around the interface is sensitive to the interphase property. The results suggest that a th ree-phase model can describe the composites with surface-treated fillers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKIKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser bending mechanism is remarked, and its essence is the temperature gradient mechanism. The reverse bending and the thickened mechanisms are included in the temperature gradient mechanism because they are only different phenomena based on different thickness of the material. Experimental result shows that there is a kind of un-convention temperature distribution in the limit thickness specimen under laser irradiation. This phenomenon cannot be explained by the classical Fourier Law and is defined as Pan-Fourier effect in order to explain laser bending mechanism further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recoverable plate impact testing technology has been used for studying the growth mechanisms of mode II crack. The results show that interactions of microcracks ahead of a crack tip cause the crack growth unsteadily. Failure mode transitions of materials were observed. Based on the observations, a discontinuous crack growth model was established. Analysis shows that the shear crack grows unsteady as the growth speed is between the Rayleigh wave speed c(R) and the shear wave speed c(s); however, when the growth speed approaches root 2c(s), the crack grows steadily. The transient microcrack growth makes the main crack speed to jump from subsonic to intersonic and the steady growth of all the sub-cracks leads the main crack to grow stably at an intersonic speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were employed to explore the gas-sensing mechanisms of zinc oxide (ZnO) with surface reconstruction taken into consideration. Mix-terminated (10 (1) over bar0) ZnO surfaces were examined. By simulating the adsorption process of various gases, i.e., H-2, NH3, CO, and ethanol (C2H5OH) gases, on the ZnO (10 (1) over bar0) surface, the changes of configuration and electronic structure were compared. Based on these calculations, two gas-sensing mechanisms were proposed and revealed that both surface reconstruction and charge transfer result in a change of electronic conductance of ZnO. Also, the calculations were compared with existing experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Recently, people are confused with two opposite variations of elastic modulus with decreasing size of nano scale sample: elastic modulus either decreases or increases with decreas- ing sample size. In this paper, based on intermolecular potentials and a one dimensional model, we provide a unified understanding of the two opposite size effects. Firstly, we analyzed the mi- crostructural variation near the surface of an fcc nanofilm based on the Lennard-Jones potential. It is found that the atomic lattice near the surface becomes looser in comparison with the bulk, indicating that atoms in the bulk are located at the balance of repulsive forces, resulting in the decrease of the elastic moduli with the decreasing thickness of the film accordingly. In addition, the decrease in moduli should be attributed to both the looser surface layer and smaller coor- dination number of surface atoms. Furthermore, it is found that both looser and tighter lattice near the surface can appear for a general pair potential and the governing mechanism should be attributed to the surplus of the nearest force to all other long range interactions in the pair po- tential. Surprisingly, the surplus can be simply expressed by a sum of the long range interactions and the sum being positive or negative determines the looser or tighter lattice near surface re- spectively. To justify this concept, we examined ZnO in terms of Buckingham potential with long range Coulomb interactions. It is found that compared to its bulk lattice, the ZnO lattice near the surface becomes tighter, indicating the atoms in the bulk located at the balance of attractive forces, owing to the long range Coulomb interaction. Correspondingly, the elastic modulus of one- dimensional ZnO chain increases with decreasing size. Finally, a kind of many-body potential for Cu was examined. In this case, the surface layer becomes tighter than the bulk and the modulus increases with deceasing size, owing to the long range repulsive pair interaction, as well as the cohesive many-body interaction caused by the electron redistribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several discharge areas by laser-guided discharge (LGD) were compared with those by common arc discharge. The randomicity of discharge areas by common arc discharge was controlled by laser guiding on two scales: large scale (the spacing of the discharge areas) and small scale (the inside of the discharge area). The position of the discharge area overlapped completely with a laser focus; therefore, the distribution and surface shape of the discharge areas were controlled. The stochastic movement of anode spot in the discharge area was controlled by laser guiding. As such, the repetitive melting and solidifying of microstructures in the discharge area was constrained. The tempered microstruc- tures in the discharge area were voided, the utilization efficiency of input energy was improved, and the strengthened depth of the discharge areas was increased. The regularity of cross-sectional shape of the discharge area was also improved. The hardness of microstructures in both discharge areas is greater than that of the base material. The highest level of hardness of microstructures in both discharge areas measures above 1000 HV. In summary, the hardness ofmicrostructures in the discharge area by LGD is larger and more discrete than that by common arc discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the physical origin of population inversion via continuous wave two-colour coherent excitation in three-level systems by dressing the inverted transition. Two different mechanisms are identified as being responsible for the population inversion. For V-configured systems and cascade (E) configured systems with inversion on the lower transition, the responsible mechanism is the selective trapping of dressed states, and the population inversion approaches the ideal value of 1. For Lambda-configured systems and Xi-configured systems with inversion on the upper transition, population inversion is based on the selective excitation of dressed states, with the population inversion tending towards 0.5. As the essential difference between these two mechanisms, the selective trapping of dressed states occurs in systems with strong decay into dressed states while the selective excitation appears in systems with strong decay out of dressed states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-shot laser damage threshold of MgO for 40-986 fs, 800 nm laser pulses is reported. The pump-probe measurements with femtosecond pulses were carried out to investigate the time-resolved electronic excitation processes. A theoretical model including conduction band electrons (CBE) production and laser energy deposition was applied to discuss the roles of multiphoton ionization (MPI) and avalanche ionization in femtosecond laser-induced dielectric breakdown. The results indicate that avalanche ionization plays the dominant role in the femtosecond laser-induced breakdown in MgO near the damage threshold. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2. (C) 2006 Elsevier Ltd. All rights reserved.