72 resultados para signature splitting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the spin splitting of the exciton states in semiconductor coupled quantum dots (CQDs) containing a single magnetic ion. We find that the spin splitting can be switched on/off in the CQDs via the sp-d exchange interaction using the electric field. An interesting bright-to-dark exciton transition can be found and it significantly affects the photoluminescence spectrum. This phenomenon is induced by the transition of the ground exciton state, arising from the hole mixing effect, between the bonding and antibonding states. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of the transfer matrix technique, interface-induced Rashba spin splitting of conduction subbands in Al0.3Ga0.7As/GaAs/AlxGa1-xAs/Al0.3Ga0.7As step quantum wells which contain internal structure inversion asymmetry introduced by the insertion of AlxGa1-xAs step potential is investigated theoretically in the absence of electric field and magnetic field. The dependence of spin splitting on the well width, step width and Al concentration is investigated in detail. We find that the sign of the first excited subband spin splitting changes with well width and step width, and is opposite to that of the ground subband under certain conditions. The sign and strength of the spin splitting are shown to be sensitive to the components of the envelope function at three interfaces. Copyright (C) EPLA, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the method of finite difference, the anisotropic spin splitting of the AlxGa1-xAs/GaAs/AlyGa1-yAs/AlxGa1-xAs step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field. We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field. The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin. The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for the nonresonant case or the peak splitting for the resonant case. The line shape of conductance (vs Fermi energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a Fano profile, or a Breit-Wigner peak and a dip in both cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure, Zeeman splitting, and Stark shift of In1-yMnyAs1-xNx oblate quantum dots are studied using the ten-band k center dot p model including the sp-d exchange interaction between the carriers and the magnetic ion. The Zeeman splitting of the electron ground states is almost isotropic. The Zeeman splitting of the hole ground states is highly anisotropic, with an anisotropy factor of 918 at B=0.1 T. The Zeeman splittings of some of the electron and hole excited states are also highly anisotropic. It is because of the spin-orbit coupling which couples the spin states with the anisotropic space-wave functions due to the anisotropic shape. It is found that when the magnetic quantum number of total orbital angular momentum is nearly zero, the spin states couple with the space-wave functions very little, and the Zeeman splitting is isotropic. Conversely, if the magnetic quantum number of total orbital angular momentum is not zero, the space-wave functions in the degenerate states are different, and the Zeeman splitting is highly anisotropic. The electron and hole Stark shifts of oblate quantum dots are also highly anisotropic. The decrease of band gap with increasing nitrogen composition is much more obvious in the smaller radius case because the lowest conduction level is increased by the quantum confinement effect and is closer to the nitrogen level. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unique spin splitting behaviors in ultrathin InAs layers, which show very different spin splitting characteristics between the InAs monolayer (ML) and submonolayer (SML) have been observed. While distinct spin splitting is observed in an InAs ML, no visible spin splitting is found in a 1/3 ML InAs SML. In addition, the spin relaxation time in the 1/3 ML InAs is found to be much longer than that in the 1 ML sample. These results are in good agreement with the theoretical prediction that the interexcitonic exchange interaction plays a dominant role in energy splitting, while the intraexciton exchange interaction controls the spin relaxation. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.