59 resultados para phenethyl alcohol
Resumo:
A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.
Resumo:
A series of cost-effective, proton-conducting composite membranes, comprising of Nafion (R) ionomer, chitosan (CS). and polyvinyl alcohol (PVA), is successfully prepared. By taking advantage of the strong electrostatic interactions between Nafion (R) ionomer and CS component, Nafion ionomer is effectively implanted into the PVA/CS composite membranes, and improves proton conductivity of the PVA/CS composite membranes. Furthermore, this effect dramatically depends on the composition ratio of PVA/CS, and the optimum conductivity is obtained at the PVA/CS ratio of 1:1. The developed composite membranes exhibit much lower methanol permeability compared with the widely used Nafion (R) membrane, indicating that these novel membranes have great potential for direct methanol fuel cells (DMFCs).
Resumo:
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Resumo:
In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.
Resumo:
Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.
Resumo:
In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.
Resumo:
A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.
Resumo:
A new method of measuring the mean size of solvent clusters in swollen polymer membrane is presented in this paper. This method is based on a combination of inverse gas chromatography (IGC) and equilibrium swelling. The mechanism is that weight fraction activity coefficient of solvent in swollen polymer is influenced by its clusters size. The mean clusters size of solvent in swollen polymer can be calculated as the quotient of the weight fraction activity coefficient of clustering system dividing the weigh fraction activity coefficient of non-clustering system. In this experiment, the weigh fraction activity coefficient of non-clustering system was measured with IGC. Methanol, ethanol and polyimide systems were tested with the new method at three temperatures, 20, 40, and 60degreesC. The mean clusters size of methanol in polyimide was five, four, and three at each temperature condition, respectively. Ethanol did not form clusters (the mean clusters size was one). In contrast to the inherent narrow temperature range in DSC, XRD, and FTIR methods, the temperature range in IGC and equilibrium swelling is broad. Compared with DSC. XRD. and FTIR, this new method can detect the clusters of solvent-polymer system at higher temperature.
Resumo:
Efficient blue polymer light-emitting diodes (PLEDs) have been fabricated with a neutral alcohol-soluble polyfluorene, i.e., poly(9,9-bis(6(')-diethoxylphosphorylhexyl)fluorene) (PF-EP), as the emitting layer, high work-function Al as the cathode, and poly(vinyl carbazole) as the hole-transporting layer. The PLEDs display a maximum luminous efficiency of 4.0 cd/A and the luminous efficiency > 2.4 cd/A in a wide range of current densities. It is found that the promising performance of the devices is attributed to the fact that the PF-EP is not only an efficient blue light-emitting polymer, but it also can facilitate efficient electron injection at the Al/PF-EP interface.
Resumo:
We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.
Resumo:
Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.
Resumo:
Three kinds of polymer resin supported Pd catalysts were prepared by mixing PdCl2, with alkaline styrene anion exchange resins[D392 -NH2, D382, -NHCH3, D301R, -NH(CH3)(2)], strongly alkaline styrene anion exchanged resin [201 X 7DVB, -NH+ (CH3)(3)] and alkaline epoxy exchange resin (701, -NH2), and hydrogenating in liquid phase at 1.013 X 10(5) Pa. The hydrogenation of furfural was studied under the reaction conditions such as solvent, temperature. Pd content in the supported catalyst and the amount of the catalyst. The yield of hydrogenation reaction of furfural markedly increased to 100% and the selectivity to tetrahydrofurfuryl alcohol increased to over 98% by polymer (alkaline styrene anion exchange resins D392, -NH2, D382, -NHCH3) supported palladium catalysts comparing with the yield over 70% and selectivity over 97% by palladium catalyst, in 50% alcohol-50% water or pure water solution at 1.013 X 10(5) Pa. The relationship between hydrogenation and the structures of functional group in the supporting resin was examined by XPS method.
Resumo:
A peroxidase was extracted from Chinese soybean seed coat, and its thermostability and acid-stability were characterized. This peroxidase was immobilized into a self-gelatinizable grafting copolymer of polyvinyl alcohol with 4-vinylpyridine(PVA-g-PVP) to construct an acid-stable hydrogen peroxide biosensor. The effect of pH was studied for optimum analytical performances by amperometric and spectro-photometric methods, also the K-m(app) and the stability of the soybean peroxidase-based biosensor are discussed. At pH 3.0, the soybean peroxidase maintained its bioactivity and the enzyme electrode had a linear range from 0.01 to 6.2 mM with a detection limit of 1.0 x 10(-7) M. In addition, the main characteristics of different hydrogen peroxide sensors were compared.