86 resultados para optical coating
Resumo:
Two different kinds of 1064 nm high-reflective (HR) coatings, with and without SiO2 protective layer, were prepared by electron beam evaporation. Three-dimensional damage morphology, caused by a Nd:YAG pulsed laser, was investigated for these HR coatings. Development of laser-induced damage on HR coatings was revealed by both temperature field calculation and discrete meso-element simulation. Theoretical results met experimental very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.
Resumo:
In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.
Resumo:
In this article, we report an optical fluoride probe based on microstructured polymer optical fibers (MPOFs) which is modified with morin-Al complex doped silica gel film. This probe is fabricated by sol-gel fluxion coating process. Sol solution doped with morin-Al is directly inhaled into array holes of MPOF and then forms morin-Al-gel matrix film in them. The sensing probe shows different fluorescence intensity to different fluoride ion concentrations in the aqueous solution. The range of response is 550 mmol/L, under the condition of pH 4.6. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The asymmetric Fabry-Perot (ASFP) mode position with the thickness of different index coating layer is calculated. The reason for the blue shift of the ASFP mode with the increasing thickness of low index coating layer is analyzed and this phenomenon is observed in experiments. With the wet-etching method, the ASFP mode can be tuned to the desired wavelength and thus the deviation of growth can be compensated. This method is used to improve the contrast ratio of modulators. With the ASFP mode located at different positions relative to the unbiased e-hh peak, different modulation characteristics are demonstrated.
Resumo:
The optical and structural properties of anodized AlxGa1-xAs films were investigated by using optical reflectance, X-ray photoemission and Auger electron spectroscopy (XPS and AES). II was found that the anodization process occurs progressively from the surface to the bulk of AlxGa1-xAs and the formed oxidation film comprises mainly oxides of Al and Ga together with a relatively small amount of As. The refractive indexes of the anodized Al0.8Ga0.2As film and Al0.8Ga0.2As film itself were deduced to be about 1.80 and 3.25, respectively, indicating that the anodization film is desirable for anti-reflection coating of the surface of AlxGa1-xAs/GaAs solar cells. (C) 1997 Elsevier Science S.A.
Resumo:
The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value.
Resumo:
A 1.55μm Fabry-Perot (F-P) thermo-optical tunable filter is fabricated. The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique. Due to the excellent thermo-optical property of a-Si, the refractive index of the F-P cavity will be changed by heating; the transmittance resonant peak will therefore shift substantially. The measured tuning range is 12nm, FWHM (full-width-at-half-maximum) of the transmission peak is 9nm, and heating efficiency is 0.1K/mW. The large FWHM is mainly due to the non-ideal coating deposition and mirror undulation. Possible improvements to increase the efficiency of heating are suggested.
Resumo:
Three organo-soluble polyimide powders have been synthesized. Their imidization was verified by Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA) techniques. The amorphous morphology of their thin films were confirmed by X-ray diffraction. Polyimide thin films were prepared by solution casting or spin coating. UV-visible transmission spectra of thin films revealed that they are almost transparent in the range of visible light. With in-plane orientation, revealed by FTIR spectra, negative birefringence (Delta n) of thin films were observed, and refractive indices of the thin films along the film plane (n(TE)) and normal to the plane (n(TM)) were measured by a prism coupler. Because of negative birefringence of the thin films, they tan be substituted for the compensation films for twisted nematic liquid crystal displays (TN-LCDs) to extend their viewing angles. In this paper, a 90 degrees C TN-LCD and 120 degrees C TN-LCD were taken as examples to show the compensation effect of thin films of a qualified polyimide. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
An elasto-plastic finite element method is developed to predict the residual stresses of thermal spraying coatings with functionally graded material layer. In numerical simulations, temperature sensitivity of various material constants is included and mix
Resumo:
A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.
Resumo:
In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.
Resumo:
The effects of La2O3 addition on the microstructure and wear properties of laser clad gamma/C(r)7C(3)/TiC composite coatings on gamma-TiAl intermetallic alloy substrates with NiCr-Cr3C2 precursor mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometer (EDS) and block-on-ring wear tests. The responding wear mechanisms are discussed in detail. The results are compared with that for composite coating without La2O3. The comparison indicates that no evident new crystallographic phases are formed except a rapidly solidified microstructure consisting of the primary hard Cr7C3 and TiC carbides and the gamma/Cr7C3 eutectics distributed in the tough gamma nickel solid solution matrix. Good finishing coatings can be achieved under a proper amount of La2O3-addition and a suitable laser processing parameters. The additions of rare-earth oxide La,03 can refine and purify the microstructure of coatings, relatively decrease the volume fraction of primary blocky Cr7C3 to Cr7C3/gamma eutectics, reduce the dilution of clad material from base alloy and increase the microhardness of the coatings. When the addition of La2O3 is approximately 4 wt.%, the laser clad composite coating possesses the highest hardness and toughness. The composite coating with 4 wt.%La2O3 addition can result the best enhancement of wear resistance of about 30%. However, too less or excessive addition amount of La2O3 have no better influence on wear resistance of the composite coating.