48 resultados para high resolution image
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.
Resumo:
Sharp and rich photoluminescence lines accociated with free exciton (FE), excitons bound to neutral acceptors (A0X) and donors (D0X) in molecular beam epitaxially (MBE) grown (211) CdTe/(211)B GaAs have been reported for the first time. The results show that the (211) CdTe/(211)B GaAs grown under optimized conditions could have as high a crystal perfection as those grown on lattice-matched substrates.
Resumo:
The diamond (100) facets deposited at initial 1.0% CH4 have been investigated using high resolution electron energy loss spectroscopy (HREELS). The diamond (100) facets grown at 800-degrees-C are terminated by CH2 radicals, and there is no detectable frequency shift compared with the characteristic frequencies of molecular subgroup CH2. Beside the CH2 vibration loss, CH bend loss (at 140 meV) of locally monohydrogenated dimer is detected for the diamond (100) facets grown at 1000-degrees-C. Dosing the (100) facets grown at 800-degrees-C with atomic hydrogen at 1*10(-6) mbar, the loss peak at 140 meV appears. It is suggested that there are enough separately vacant sites and uniformly dispersed monohydrogenated dimers on (100) facets. This structure relaxes the steric repulsion between the adjacent hydrogen atoms during the diamond (100) surface growth.
Resumo:
A new method of differentiating the deep level transient spectroscopy (DLTS) signal is used to increase the resolution of conventional DLTS. Using this method, more than one single deep level with small differences in activation energy or capture cross section, which are often hard to determine by conventional DLTS, can be distinguished. A series of lattice-mismatched InxGa1-xP samples are measured by improved DLTS to determine accurately the activation energy of a lattice-mismatch-induced deep level. This level cannot be clearly determined using conventional DLTS because the two signals partly overlap each other. Both the signals are thought to originate from a phosophorus vacancy and lattice-mismatch-induced defect.
Resumo:
A new method using an atomic-resonance filter and deconvolution techniques has been developed to acquire high-resolution spectra of atmospheric Rayleigh-Mie scattering. In the deconvolution process, the difficulty of the undetermined division 0/0 is overcome by a fitting method. Preliminary laboratory experimental results on 90-deg scattering show that with a signal-to-noise ratio of 20, the scattered Rayleigh-Mie spectrum may be retrieved in agreement with the theoretical analysis.
Resumo:
IEECAS SKLLQG