410 resultados para fabrication of GaN epitaxial films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sapphire substrates were nanopatterned by dry (inductively coupled plasma, ICP) etching to improve the performance of GaN-based light-emitting diodes (LEDs). GaN-based LEDs on nanopatterned sapphire substrates (NPSS) were fabricated by metal organic chemical vapor deposition (MOCVD). The characteristics of LEDs fabricated on NPSS prepared by dry etching were studied. The light output power and wall-plug efficiency of the LEDs fabricated on NPSS were greater than those of the conventional LEDs fabricated on common planar sapphire substrates when the injection currents were the same. The LEDs on NPSS and common planar sapphire substrates have similar I-V characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-patterned sapphire substrates (NPSSs) were fabricated by a chemical wet etching technology using nano-sized SiO2 as masks. The NPSS was applied to improve the performance of GaN-based light emitting diodes (LEDs). GaN-based LEDs on NPSSs were grown by metal organic chemical vapour deposition. The characteristics of LEDs grown on NPSSs and conventional planar sapphire substrates were studied. The light output powers of the LEDs fabricated on NPSSs were considerably enhanced compared with that of the conventional LEDs grown on planar sapphire substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new measurement method for GaN films and their Schottky contacts is reported in this paper. Instead of the fabrication of Ohmic contacts, this measurement is based on a special back-to-back Schottky diode that has a rectifying character. A mathematical model indicates that the electronic parameters of the materials can be deduced from the device's I-V data. In the experiment of an unintentionally doped n-type GaN layer with a residual carrier density 7 x 10(16) cm(-3), the analysis by the new method gives the layer's sheet resistance rho(s) = 497 Omega, the electron mobility mu(n) =, 613 cm(2) V-1 s(-1) and the ideality factor of the Ni/Au-GaN Schottky contacts n = 2.5, which are close to the data obtained by the traditional measurements: rho(s) = 505 Omega, mu(n) = 585 cm(2) V-1 s(-1) and n = 3.0. The method reported can be adopted not only for GaN films but also for other semiconductor materials, especially in the cases where Ohmic contacts of high quality are hard to make or their fabricating process affects the film's character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexagonal GaN films (similar to 3 mu m) were grown on 3c-SiC/Si(111) and carbonized Si(111) substrates using a thick AlN buffer Cracks are observed on the surface of the GaN film grown on the carbonized Si(111), while no cracks are visible on the 3c-SiC/Si(111). XRD exhibits polycrystalline nature of the GaN film grown on the carbonized Si(111) due to poorer crystalline quality of this substrate. Raman spectra reveal that all GaN layers are under tensile stress, and the GaN layer grown on 3c-SiC/Si(111) shows a very low stress value of sigma(xx) = 0.65 Gpa. In low-temperature Photoluminescence spectra the remarkable donor-acceptor-pair recombination and yellow band can be attributed to the incorporation of Si impurities from the decomposition of SiC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (alpha-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface., The optimum annealing temperature of sapphire substrates is given. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lattice-matched (Delta(a/a) = 1.8-3.4%) (001) LiGaO2 substrates have been employed for the first time to grow ZnO thin films by pulsed-laser deposition at 350-650 degrees C with oxygen partial pressure of 20Pa. XRD shows that a highly c-axis-oriented ZnO film can be deposited on (001) LiGaO2 substrate at 500 degrees C. AFM images reveal the surfaces of as-deposited ZnO films are smooth and root-mean-square values are 6.662, 5.765 and 6.834 nm at 350, 500 and 650 degrees C, respectively. PL spectra indicate only near-band-edge UV emission appears in the curve of ZnO film deposited at 500 degrees C. The deep-level emission of ZnO film deposited at 650 degrees C probably results from Li diffusion into the film. All the results illustrate substrate temperature plays a pretty important role in obtaining ZnO film with a high quality on LiGaO2 substrate by pulsed-laser deposition. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN films grown on sapphire substrate with an emphasis on epitaxial lateral overgrown (ELOG) layers with an array of rhombic shaped mask area as well as InGaN/GaN MQW laser diode layer structures were investigated by cathodoluminescence (CL) spectroscopy and CL imaging at room and low temperatures. The microscopic imaging with a high-spatial resolution clearly reveals the distribution of threading dislocations and point defects in ELOG GaN films. The secondary electron and CL data measured on cleaved faces of laser diodes are analyzed in consideration with luminescence mechanisms in semiconductor heterostructures and around the p - n junction, providing important information on the defects and carrier dynamics in laser diode devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor (HEMT) hetero-structures were grown on the 2-in Si (1 1 1) substrate using metal-organic chemical vapor deposition (MOCVD). Low-temperature (LT) AlN layers were inserted to relieve the tension stress during the growth of GaN epilayers. The grown AlGaN/GaN HEMT samples exhibited a maximum crack-free area of 8 mm x 5 mm, XRD GaN (0 0 0 2) full-width at half-maximum (FWHM) of 661 arcsec and surface roughness of 0.377 nm. The device with a gate length of 1.4 mu m and a gate width of 60 mu m demonstrated maximum drain current density of 304 mA/mm, transconductance of 124 mS/mm and reverse gate leakage current of 0.76 mu A/mm at the gate voltage of -10 V. (C) 2008 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN-multiple-quantum-well-based light emitting diode ( LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence ( PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl ( HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.