44 resultados para affinities
Resumo:
The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg Fe Pb Cu=Al Ni Cr=Zn=Cd=Co=Mn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Full-size image (1K), where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants
Resumo:
In this study, electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding interactions of ten flavonoid aglycones and ten flavonoid glycosides with DNA duplexes. Relative binding affinities of the flavonoids toward DNA duplexes were estimated based on the fraction of bound DNA. The results revealed that the 4'-OH group of flavonoid aglycones was essential for their DNA-binding properties. Flavonoid glycosides with sugar chain linked on ring A or ring B showed enhanced binding toward the duplexes over their aglycone counterparts, whereas glycosylation of the flavonol quercetin on ring C exhibited a less pronounced effect.
Resumo:
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode.
Resumo:
The C-60 dianion is used to reduce tetrachloroauric acid (HAuCl4) for the first time; three-dimensional C-60 bound gold (Au-C-60) nanoclusters are obtained from C-60-directed self-assembly of gold nanoparticles due to the strong affinities of Au-C-60 and C-60-C-60. The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C-60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies.
Resumo:
It is noteworthy to understand the details of interactions between antitumor drugs and DNA because the binding modes and affinities affect their antitumor activities. Here, The interaction of toluidine blue (TB), a potential antitumor drug for photodynamic therapy of tumor, with calf thymus DNA (ctDNA) was explored by UV-vis, fluorescence, circular dichroism (CD) spectroscopy, UV-rnelting method and surface-enhance Raman spectroscopy (SERS). The experimental results suggest that TB could bind to ctDNA via both electrostatic interaction and partial intercalation.
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.
Resumo:
Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. The calculated bond distance decreases with the increasing of atomic number of 4d metals, reaches minimum at RhS, then increases. For cationic molecules, the calculated bond distance decreases to the minimum at MoS+, then increases. The calculated vibrational frequency decreases from YS(YS+) to PdS(PdS+) for both neutral and cationic molecules. The bond ionic character decreases from YS(YS+) to PdS(PdS+) for neutral and cationic molecules. The bonding patterns are discussed and compared with the available studies.
Resumo:
Two significant G-quadruplex aptamers named AGRO100 and T30695 are identified as multi functional aptamers that can bind the protein ligands nucleolin or HIV-1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin-binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin-DNA complexes reveal excellent peroxidase-like activities. higher than that of the reported hemin-PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins. which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100-nucleolin interaction, the surface-expressed nucleolin of HeLa cells is labeled in situ with the hemin-AGRO100 DNAzyme, and then determined in the luminol-H2O2 system.
Resumo:
The binding interactions of 22 flavonoids (9 aglycones and 13 glycosides) with DNA triplexes were investigated using electrospray ionization mass spectrometry (ESI-MS). The results revealed that the hydroxyl positions of aglycones. the locations and numbers of saccharide, as well as the aglycone skeletons play roles in the triplex-binding properties of flavonoids. The presence of 3-OH, or 3'-OH, or replacement of 4'-OH with methoxy group in aglycones decreased the fraction of bound DNA sharply. Flavonoid glycosides exhibit higher binding affinities towards the DNA triplexes than their aglycone counterparts. Glycosylations of flavones at the 8-C position and isoflavones at the 7-O position show higher binding affinities than those on the other positions of ring A of aglycones. Glycosylation with a disaccharide on 0 position of flavonol results in higher binding affinity than that with monosaccharide. Flexibility of the ring B is favorable for its interaction with DNA triplex. According to sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments, glycosylation and non-planarity of flavonoid aglycones lead to different dissociation pathways of the flavonoid/triplex complexes.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX+ to FeX+.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies and dipole moments of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the metal s, d and f orbitals and oxygen p orbitals. Contrary to the well known lanthanide contraction, the bond distance is not regular from LaO to LuO for both neutral and charged molecules. An obvious population at 5d orbital was observed through the lanthanide series. 4f electrons also participate the chemical bonding for CeO to NdO and TbO to TmO. For EuO, GdO, YbO and LuO, 4f electrons tend to be localized. The spin multiplicity is regular for neutral and charged molecules. The spin multiplicity of the charged molecules can be obtained by -1 (or +1 for TbO+, DyO+, YbO- and YbO+) compared with the corresponding neutral molecules.
Resumo:
Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by +/- 1 of their corresponding neutral species.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO- to AuO- for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO- to AuO- (except TaO-), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants.