52 resultados para Virial-coefficients
Resumo:
GaInP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160A degrees C. The results indicate that the quantum efficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density temperature coefficients dJ (sc)/dT of GaInP subcell and GaAs subcell are determined to be 8.9 and 7.4 mu A/cm(2)/A degrees C from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients dV (oc)/dT calculated based on a theoretical equation are -2.4 mV/A degrees C and -2.1 mV/A degrees C for GaInP subcell and GaAs subcell.
Resumo:
We have investigated the ground exciton energy pressure coefficients of self-assembled InAs/GaAs quantum dots by calculating 21 systems with different quantum dot shape, size, and alloying profile using the atomistic empirical pseudopotential method. Our results confirm the experimentally observed significant reductions of the exciton energy pressure coefficients from the bulk values. We show that the nonlinear pressure coefficients of the bulk InAs and GaAs are responsible for these reductions, and the percentage of the electron wave function on top of GaAs atoms is responsible for the variation of this reduction. We also find a pressure coefficient versus exciton energy relationship which agrees quantitatively with the experimental results. We find linear relationships which can be used to get the information of the electron wave functions from exciton energy pressure coefficient measurements.
Resumo:
Ten-period 5.5 nm Si0.75Ge0.25/10.3 nm Si/2.5 nm Si0.5Ge0.5 trilayer asymmetric superlattice was prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The stability of Mach-Zehnder interferometer was improved by utilizing polarization-maintaining fibers. According to the electro-optic responses of the superlattice with the light polarization along [110] and [-110], respectively, both electro-optic coefficients gamma(13) and gamma(63) of such asymmetric superlattice were measured. gamma(13) and gamma(63) are 2.4x10(-11) and 1.3x10(-11) cm/V, respectively, with the incident light wavelength at 1.55 mu m. (c) 2006 American Institute of Physics.
Resumo:
Excitation-power dependence of hydrostatic pressure coefficients (dE/dP) of InxGa1-xN/InyGa1-yN multiple quantum wells is reported. When the excitation power increases from 1.0 to 33 mW, dE/dP increases from 26.9 to 33.8 meV/GPa, which is an increase by 25%. A saturation behavior of dE/dP with the excitation power is observed. The increment of dE/dP with increasing carrier density is explained by an reduction of the internal piezoelectric field due to an efficient screening effect of the free carriers on the field.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.
Resumo:
The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.
Resumo:
使用四波混频测试光子晶体光纤的色散和非线性参数
Resumo:
In this paper, the effective coupling coefficient k(eff) and the self-coupling coefficient zeta(1) are introduced to describe the characteristic of gratings in a resonant situation when the effects of radiation and other partial waves coupling are considered. The dependence of these two coupling coefficients on grating tooth shapes and depths and the dimensions of graded refractive index (GRIN) waveguides is numerically analysed. The results show that the gratings with linear GRIN waveguides have the largest \k(eff)\. The possibility of realizing a complex-coupled DFB laser, even a pure gain or loss coupled DFB laser, employing only a real refractive index coupled grating is also discussed.
Resumo:
An effective coupling efficient is introduced for gain-coupled distributed feedback lasers with absorptive grating. When radiation and other partial wave coupling effects are considered, the effective coupling coefficient will change significantly. In some cases, it will become real, although both loss and index coupling are presented.
Resumo:
We report a new method for calculating transmission coefficients across arbitrary potential barriers based on the Runge-Kutta method. A numerical solution of the Schrodinger equation is calculated using the Runge-Kutta method,and a new model is established to analyze the numerical results to find the transmission coefficient. This technique is applied to various cases, such as parabolic potential barrier and double-barrier structures. Transmission probability with high precision is obtained and discussed. The tunnelling current density through a MOS structure is also explored and the result coincides with the Fowler-Nordheim model,which indicates the applicability of our method.
Resumo:
The intensity-dependent two-photon absorption and nonlinear refraction coefficients of GaP optical crystal at 800 nm were measured with time-resolved femtosecond pump-probe technique. A nonlinear refraction coefficient of 1.7*10^(-17) m2/W and a two-photon absorption coefficient of 1.5*10^(-12) m/W of GaP crystal were obtained at a pump intensity of 3.5*10^(12) W/m2. The nonlinear refraction coefficient saturates at 3.5*10^(12) W/m2, while the two-photon absorption coefficient keeps linear increase at 6*10^(12) W/m2. Furthermore, fifth-order nonlinear refraction of the GaP optical crystal was revealed to occur above pump intensity of 3.5*10^(12) W/m2.
Resumo:
Excitation-power dependence of hydrostatic pressure coefficients (dE/dP) of InxGa1-xN/InyGa1-yN multiple quantum wells is reported. When the excitation power increases from 1.0 to 33 mW, dE/dP increases from 26.9 to 33.8 meV/GPa, which is an increase by 25%. A saturation behavior of dE/dP with the excitation power is observed. The increment of dE/dP with increasing carrier density is explained by an reduction of the internal piezoelectric field due to an efficient screening effect of the free carriers on the field.
Resumo:
In this paper we present a new method for measuring diffusion coefficients in liquid metals under convection-less conditions with solid/liquid-liquid/solid trilayer. The advantage of this kind of trilayer is that effects from gravity-induced convection and Marangoni-convection can be omitted, so that the diffusion coefficient is determined more accurately. The Ta/Zn-Sn/Si trilayer were prepared with a multi-target ion-beam sputtering deposition technique and annealed in an electric furnace under an argon atmosphere. The interdiffusion of liquid zinc and tin at 500 degrees degree C was investigated. The diffusion concentration profiles were determined by energy dispersive spectroscopy. The interdiffusion coefficients range from 1.0x10(-6)cm(2)/s to 2.8x10(-6)cm(2)/s, which is less than previous values measured by capillary reservoir technique under 1g-environment where various convection exist. The precise interdiffusion coefficients of liquid zinc and tin result from the removing of disturbances of various kinds of convection.
Resumo:
This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.