50 resultados para Triple Consistency Principle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We built 64 sets of 3D models of DNA triplex base triplets (TBT) and minimized their energies. The TBTs were divided into 32 pairs of conjugated ones on the basis of their sequence characteristic, and the energies of each pair of them were compared and analyzed, the results showed: (i) The duplex DNA of which any strand contains at least a couple of A or T, has a preference for selecting the oligodeoxyribonucleic acid (ODN) strand containing abundant T to form TBT. (ii) The duplex DNA of which any strand contains at least a couple of G or C has a preference for selecting ODN containing abundant G to form symmetric antiparallel TBT, but selecting ODN containing abundant C to form asymmetric parallel TBT. (iii) The duplex DNA of which any strand contains only one of A, T, G or C has a preference for selecting ODN containing abundant pyrimidines (T or C) to form antiparallel TBT. Additionally, two examples of TBTs applications, in designing ODN to form triplex with duplex were presented. The energy calculation result revealed that 15-TCG is the best ligand of the HIV PPT duplex. The comparative analysis of energies of the conjugated TBTs provides directive significance for designing ODN strand that is easy to form triplex in theory. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO2 (M=Sc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that Be-Cu is the most prominent extrinsic donor and Ca-M is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuSCO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO2 (M=SC, y). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations of electronic structures and optical properties of Mg (or Si) and Mn co-doped GaN were carried out by means of first-principle plane-wave pesudopotential (PWP) based on density functional theory - The spin polarized impurity bands of deep energy levels were found for both systems. They are half metallic and suitable for spin injectors. Compared with GaN Mn, GaN Mn-Mg exhibits a significant increase in T-C 1 while the 1.3 eV absorption peak in GaN Mn disappears due to addition of Mg. In addition, a strong absorption peak due to T-4(1) (F) -> T-4(2) (F) transition of Mn4+ were observed near 1.1 eV. Nevertheless, GaN Mn-Si failed to show increase of T-C, and the absorption peak was not observed at the low energy side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discovers some shortcomings in the algorithm for the incorporation of Si into GaAs in the GaAs VPE process. These faults arise from neglecting a link, the compatibility relationship, in chemical thermodynamics. The meaning of said relationship is as follows: In an equilibrium complex system, each species can only contribute one and the same quantity (its equilibrium quantity) to the different equilibria of the various reactions involving it; yet even under this restriction, every equilibrium constant is satisfied, and all the reaction equilibria coexist compatibly in the system. Only by adding the relationship can the equilibrium theory for the complex system be complete. This paper also tells its position in chemical thermodynamics. Such a compatibility concept directly leads to an equivalence principle: In a complex system, a certain species can usually be simultaneously formed by many chemical reactions; when the system has reached equilibrium under fixed environmental conditions, the equilibrium quantity of said species calculated according to each chemical equation of these reactions will be equal and the various reaction approaches will be equivalent, provided that for all the reactants and all the other products of these reactions their equilibrium quantities in the system are respectively taken as corresponding knowns for the calculations, which is extremely useful for seeking a functional relation among the species' equilibrium quantities in a system (Si contamination is one of the examples). Under the guidance of those arguments, the various schools' algorithms for the Si contamination can be uniformized and simplified, and the contamination quantity relation between Si and O, two very important impurities, is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a triangular triple quantum dots (TTQDs) ring with three terminals, when lowering one of the dot-lead coupling to realize the left-right (L-R) reflection symmetry coupling, the internal C-upsilon of the TTQDs is well preserved in the absence of many-body effect for the symmetric distribution of the dot-lead coupling on the molecular orbits. In the presence of Kondo effect, the decrement of one of the dot-lead couplings suppresses the inter-dot hopping. This happens especially for the coupled quantum dot (QD), which decouples with the other two ones gradually to form a localized state near the Fermi level As a result, the internal dynamic symmetry of the TTQDs ring is reduced to L-R reflection symmetry, and simultaneously, the linear conductance is lifted for the new forming molecular orbit near the Fermi level

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compact and efficient triple-pass optical parametric chirped pulse amplification in a single crystal has been demonstrated. The signal was triple-pass amplified in a single nonlinear crystal by a nanosecond pump pulse. The first-pass optical parametric amplification is completely phase matched in the plane of the maximum effective nonlinearity, and the other two passes work symmetrically near to the first-pass optical parametric amplification plane. This architecture efficiently increases the overall gain, overcomes the optical parametric fluorescence, and clearly simplifies the amplification scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of interferometer, the moving-optical-wedge interferometer, is presented, and its principle and properties are studied. The novel interferometer consists of one beam splitter, two flat fixed mirrors, two fixed compensating plates, one fixed optical wedge, and one moving optical wedge. The optical path difference (OPD) as a function of the displacement of the moving optical wedge from the zero path difference position is accomplished by the straight reciprocating motion of the moving optical wedge. A large physical shift of the moving optical wedge corresponds to a very short OPD value of the new interferometer if the values of the wedge angle and the refractive index of the two optical wedges are given properly. The new interferometer is not so sensitive to the velocity variation of the moving optical wedge and the mechanical disturbances compared with the Michelson interferometer, and it is very applicable to low-spectral-resolution application for any wavenumber region from the far infrared down to the ultraviolet. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel type of interferometer, the moving-mirror-pair interferometer, is presented, and its principle and properties are studied. The new interferometer is built with three flat mirrors, which include two flat moving mirrors fixed as a single moving part by a rigid structure and one flat fixed mirror. The optical path difference (OPD) is obtained by the straight reciprocating motion of the double moving mirror, and the OPD value is four times the physical shift value of the double moving mirror. The tilt tolerance of the double moving mirror of the novel interferometer is systematically analyzed by means of modulation depth and phase error. Where the square aperture is concerned, the formulas of the tilt tolerance were derived. Due to the novel interferometer's large OPD value and low cost, it is very applicable to the high-spectral-resolution Fourier-transform spectrometers for any wavenumber region from the far infrared to the ultraviolet. (C) 2008 Optical Society of America.