31 resultados para Triangular finite element
Resumo:
Stress and strain distributions and crack opening displacement characteristics of short cracks have been studied in single edge notch bend and centre cracked panel specimens using elastic–plastic finite element analyses incorporating both a non strain hardening and a power law hardening behaviour. J contour integral solutions to describe stress strain conditions at crack tips for short cracks differ from those for long cracks. The analyses show that (i) short cracks can propagate at stress levels lower than those required for long cracks and (ii) a two-parameter description of crack tip fields is necessary for crack propagation.
Resumo:
The crack tip driving force of a crack growing from a pre-crack that is perpendicular to and terminating at an interface between two materials is investigated using a linear fracture mechanics theory. The analysis is performed both for a crack penetrating the interface, growing straight ahead, and for a crack deflecting into the interface. The results from finite element calculations are compared with asymptotic solutions for infinitesimally small crack extensions. The solution is found to be accurate even for fairly large amounts of crack growth. Further, by comparing the crack tip driving force of the deflected crack with that of the penetrating crack, it is shown how to control the path of the crack by choosing the adhesion of the interface relative to the material toughness.
Resumo:
We have successfully extended our implicit hybrid finite element/volume (FE/FV) solver to flows involving two immiscible fluids. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. This updating strategy can be rigorously proven to be able to eliminate the unphysical pressure boundary layer and is crucial for the correct temporal convergence rate. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centers and the auxiliary variable at vertices. The fluid interface is captured by solving an advection equation for the volume fraction of one of the fluids. The same matrix-free FV method, as the one used for momentum equations, is used to solve the advection equation. We will focus on the interface sharpening strategy to minimize the smearing of the interface over time. We have developed and implemented a global mass conservation algorithm that enforces the conservation of the mass for each fluid.
Resumo:
The paper comprehensively analyzes the distortions of a circular wedge prism with 400 mm diameter in a scanner by method of optical-mechanical-thermal integrating analysis. The structure and intensity of the prism assembly is verified and checked, and the surface deformations of the prism under gravity load, as well as the thermo-elastic distortions of the prism, are analyzed in detail and evaluated, which is finally contrasted with the measured values of Zygo Mark interferometer. The results show: the maximal distortion of the prism assembly is 10 nm magnitude and the maximal stress is 0.441 Mpa, which has much tolerance to the precision requirement of structure and the admissible stress of material; the influence of heat effect on the surface deformations of prism is proved to be far greater than the influence of gravity load, so some strict temperature-controlled measures are to be considered when the scanner is used. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.
Resumo:
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.
Resumo:
In conjunction with ANSYS, we use the finite element method to analyze the bonding stresses of Si/GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress,and peeling stress,taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure.
Resumo:
The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can be directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.
Resumo:
For an orthotropic laminate, an equivalent system with doubly cyclic periodicity is introduced. Then a 3-dimensional finite element model for the equivalent system is transformed into the unitary space, where the large finite element matrix equation is decoupled into some small matrix equations. Such a decoupling very efficiently reduces the computational effort. For an orthotropic laminate with four clamped edges, no exact elasticity solution is available, and the deflection values predicted by different methods have a considerable difference each other for a small length-to-thickness ratio. The present predictions are the largest because the present method is a full 3-dimensional finite element analysis without superfluous constraints. Illustrative numerical examples are presented to observe the distributions of stresses through the thickness of the laminates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A general numerical algorithm in the context of finite element scheme is developed to solve Richards’ equation, in which a mass-conservative, modified head based scheme (MHB) is proposed to approximate the governing equation, and mass-lumping techniques are used to keep the numerical simulation stable. The MHB scheme is compared with the modified Picard iteration scheme (MPI) in a ponding infiltration example. Although the MHB scheme is a little inferior to the MPI scheme in respect of mass balance, it is superior in convergence character and simplicity. Fully implicit, explicit and geometric average conductivity methods are performed and compared, the first one is superior in simulation accuracy and can use large time-step size, but the others are superior in iteration efficiency. The algorithm works well over a wide variety of problems, such as infiltration fronts, steady-state and transient water tables, and transient seepage faces, as demonstrated by its performance against published experimental data. The algorithm is presented in sufficient detail to facilitate its implementation.
Resumo:
The CR superconducting magnet is a dipole of the FAIR project of GSI in Germany. The quench of the strand is simulated using FEM software ANSYS. From the simulation, the quench propagation can be visualized. Programming with APDL, the value of propagation velocity of normal zone is calculated. Also the voltage increasing over time of the strand is computed and pictured. Furthermore, the Minimum Propagation Zone (MPZ) is studied. At last, the relation between the current and the propagation velocity of normal zone, and the influence of initial temperature on quench propagation are studied.
Resumo:
以酶凝干酪素的凝胶化过程为对象,利用有限元方法数值分析了在凝胶化过程中温度场的空间分布和时间演变规律.在此基础上,基于一阶的凝胶化动力学方程,数值模拟了凝胶体系的复剪切模量场,进而分析了材料配方、体系尺寸与冷却方案对复剪切模量场的影响规律.模拟结果表明,由于热阻的差异,体系表面的冷却速率大于内部,表面首先发生凝胶化;而由于预凝胶化阶段的平均冷却速率决定了无穷复剪切模量的值,最终体系内部的复剪切模量超过表面的.