21 resultados para Transconductance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (f_T) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with a high-mobility GaN thin layer as a channel are grown on high resistive 6H-SiC substrates by metalorganic chemical vapor deposition. The HEMT structure exhibits a typical two-dimensional electron gas (2DEG) mobility of 1944cm2/(V · s) at room temperature and 11588cm2/(V· s) at 80K with almost equal 2DEG concentrations of about 1.03 × 1013 cm-2 High crystal quality of the HEMT structures is confirmed by triple-crystal X-ray diffraction analysis. Atomic force microscopy measurements reveal a smooth AlGaN surface with a root-mean-square roughness of 0. 27nm for a scan area of 10μm × 10μm. HEMT devices with 0.8μm gate length and 1.2mm gate width are fabricated using the structures. A maximum drain current density of 957mA/mm and an extrinsic transconductance of 267mS/mm are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs,with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52×1016 cm-3.The resistivity of the thick GaN buffer layer is greater than 108Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Si doped AlGaN/GaN HEMT structure with high Al content (x= 44%) in the barrier layer is grown on sapphire substrate by RF-MBE. The structural and electrical properties of the heterostructure are investigated by the triple axis X-ray diffraction and Van der Pauw-Hall measurement, respectively. The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.fabricated and characterized. Better DC characteristics, maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer. The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process for fabricating n channel JFET/SOS (junction field-effect transistors on silicon-on-sapphire) has been researched. The gate p(+)n junction was obtained by diffusion, and the conductive channel was gotten by a double ion implantation. Both enhancement and depletion mode transistors were fabricated in different processing conditions. From the results of the Co-50 gamma ray irradiation experimental we found that the devices had a good total dose radiation-hardness. When the tot;ll dose was 5Mrad(Si), their threshold voltages shift was less than 0.1V. The variation of transconductance and the channel leakage current were also little.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.