93 resultados para Signal conditioning circuits
Resumo:
Laser conditioning effects of the HfO2/SiO2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multishot laser radiation were investigated. The HfO2/SiO2 AR coatings were prepared by E-beam evaporation (EBE). The singleshot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly > 80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to < 5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Y2O3/SiO2 coatings were deposited on fused silica by electron beam evaporation. A continuous wave CO2 laser was used to condition parts of the prepared samples at different scanning speeds in the air. LAMBDA 900 spectrometer was used to investigate the changes of the transmittance and residual reflection spectrum. A Nomarski microscope under dark field was used to examine the changes of the micro defect density. The changes of the surface roughness and the microstructure of the film before and after conditioning were investigated by AFM and X-ray diffraction, respectively. We found that laser-induced damage threshold (LIDT) of the films conditioning at 30 mm/s scanning speed was increased by more than a factor of 3 over the thresholds of the as-deposited films. The conditioning effect was correlated with an irradiation-induced decrease of the defect density and absorption of the films. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Laser conditioning effects of the dielectric mirror coatings with different designs were investigated. Simple quarter-wave ZrO2:Y2O3/SiO2 mirrors and half-wave SiO2 over-coated ZrO2:Y2O3/SiO2 mirror coatings were fabricated by E-beam evaporation (EBE). The absorbance of the samples before and after laser conditioning was measured by surface thermal lensing (STL) technology and the defects density was detected under Nomarski microscope. The enhancement of the laser damage resistance was found after laser conditioning. The dependence of the laser conditioning on the coating design was also observed and the over-coated sample obtained greatest enhancement, whereas the absorbance of the samples did not change obviously. During the sub-threshold fluence raster scanning, the minor damage about defects size was found and the assumption of pre-damage mechanism, based on the functional damage concept, was put forward. The improvement of the laser induced damage threshold (LIDT) was attributed to the benign damage of the defects and the dependence on the coating design owed to the damage growth behavior of different coating designs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Human neutrophils are a type of white blood cell, which forms an early line of defense against bacterial infections. Neutrophils are highly responsive to the chemokine, interleukin-8 (IL-8) due to the abundant distribution of CXCR1, one of the IL-8 receptors on the neutrophil cell surface. As a member of the GPCR family, CXCR1 plays a crucial role in the IL-8 signal transduction pathway in neutrophils. We sequenced the complete coding region of the CXCR1 gene in worldwide human populations and five representative nonhuman primate species. Our results indicate accelerated protein evolution in the human lineage, which was likely caused by Darwinian positive selection. The sliding window analysis and the codon-based neutrality test identified signatures of positive selection at the N-terminal ligand/receptor recognition domain of human CXCR1.
Resumo:
Acute stressful events enhance plasma corticosterone release and profoundly affect synaptic functions, which are involved in the development of stress-related cognitive and mental disorders. However, how exposure to stressful context immediately after str
Resumo:
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation ON was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber 13 (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD. (c) 2005 Wiley-Liss, Inc.
Resumo:
There is a unidirectional, ipsilateral and monosynaptic projection from the hippocampus to the prefrontal cortex. The cognitive function of hippocampal-prefrontal cortical circuit is not well established. In this paper, we use muscimol treated rats to inv
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.
Resumo:
The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.