108 resultados para Short Circuit, Pulse Gas Metal Arc Welding, Aluminium
Resumo:
试验研究了额定功率为3kW的连续波Nd:YAG激光焊接热输入对激光焊接K418与42CrMo异种金属焊缝形貌的影响。通过光学显微镜、扫描电镜、能谱分析仪、硬度仪、万能试验机及X衍射对激光焊接K418与42CrMo异种金属焊缝接头组织、元素分布、相组成及接头的力学性能进行分析。结果表明,在焊接热输入恒定的条件下,高功率、高焊速的匙孔焊接比低功率、低焊速的热传导焊接更能增加焊缝熔深。通过扫描电镜在焊缝区域观察到了颗粒状物和针状物,能谱分析表明,颗粒状物Nb,Ti,Mo元素聚集,Fe,Ni元素减少;针状物Ti,Nb元素聚集。K418与42CrMo异种金属激光焊接工艺参数优化后的焊缝抗拉强度高于42CrMo母材。
Resumo:
GaInP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160A degrees C. The results indicate that the quantum efficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density temperature coefficients dJ (sc)/dT of GaInP subcell and GaAs subcell are determined to be 8.9 and 7.4 mu A/cm(2)/A degrees C from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients dV (oc)/dT calculated based on a theoretical equation are -2.4 mV/A degrees C and -2.1 mV/A degrees C for GaInP subcell and GaAs subcell.
Resumo:
实验研究了正色散固体介质中的激光脉冲自压缩现象,证明了无需任何外加色散补偿情况下,固体透明介质中的自聚焦传输过程可使高功率飞秒激光脉冲实现时域脉冲压缩,并详细研究了输出脉冲的时域和频域特性随入射脉冲强度的演化规律.实验结果表明脉冲自压缩量随入射脉冲强度的增加呈递增趋势,然而当入射光强增大到足以引起超连续谱及锥形辐射产生时,脉冲时域形状会发生分裂.此外还发现发散光束入射情况下同样可以观察到脉冲自压缩现象.
Resumo:
报道了利用皮秒激光驱动产生瞬态类镍银X射线激光的实验结果.采用一路脉冲宽度为数百皮秒的激光作为预脉冲,配合另一路皮秒激光作为主脉冲联合驱动平面靶,获得了一定强度的类镍银X射线激光输出,输出能量约为5-10nJ.
Resumo:
为了使得数值模拟更为精确, 采用广义非线性薛定谔方程(GNSE)描述超短激光脉冲在光子晶体光纤中的传输演化过程, 并利用二阶分步傅里叶方法通过求解方程, 数值计算了相同脉宽和能量的超短脉冲在不同色散参量的光子晶体光纤中非线性传输和超连续谱的产生。比较了超短脉冲在光纤不同色散区传输时, 高阶色散和非线性效应对超连续谱的产生以及对脉冲波形演化的影响。结果表明, 相对于超短脉冲中心波长位于光子晶体光纤的正常和反常色散区, 可以相应获得短波波段和长波波段的超连续谱输出, 当超短脉冲中心波长位于零色散波长点时, 通
Resumo:
飞秒激光微加工技术具有加工精度高、热效应小、损伤阈值低以及能够实现真正的三维微结构加工等优点,这些特性是传统的激光加工技术所无法取代的。首先回顾了激光微加工和超短脉冲激光技术的发展历史,然后介绍超短脉冲激光与金属和介质材料相互作用的机制,接着阐述了飞秒激光直写、干涉和投影制备等各种加工方法的原理,重点讨论飞秒激光在三维光子器件集成、微流体芯片制备及其在生化传感方面的应用等,最后展望了飞秒激光微加工领域所面临的机遇和挑战,指出了未来的研究方向。
Resumo:
利用二维耦合波理论,分析了超短脉冲激光光束被完全重叠型的局域体全息光栅衍射的时空变化性质,给出了衍射和透射脉冲激光光束沿光栅出射边界的强度时空分布。以LiNbO3晶体为例,数值研究了衍射光脉冲强度沿光栅出射边界的分布和脉冲波形的变化及光栅的总衍射效率受光栅二维尺寸、入射角度、光栅折射率调制度及入射脉冲的脉冲时域半峰全宽等条件的影响而变化的情况。与一维体全息光栅对超短脉冲激光光束衍射的性质,及此光栅对连续光衍射的性质作比较,给出了合理选择光栅参量及入射条件以在光栅出射边界上得到总衍射效率较大且分布较均匀的衍
Resumo:
基于动量守恒和光参变过程中的三波耦合波方程, 和负单轴非线性光学晶体CsLiB6O10的色散方程, 研究了在光参变效应中超短激光脉冲由于群速度色散引起的展宽和形变。数值模拟显示, 在超短脉冲波形为双曲正割形和无啁啾调制时, 高阶群速度色散引起的超短脉冲为50 fs时, 晶体长度为10 mm, 紫外光213 nm作为基波入射时的脉冲展宽是波长为532 nm绿光在同等条件下的1.6倍。脉冲展宽程度与入射波长和晶体长度有关, 波长越短和晶体长度越长则脉冲展宽和波形变化越严重,高阶色散引起的超短高斯脉冲展宽, 将
Resumo:
单纵模长激光脉冲经分束后分别输入到两个波导调制器中,同时分别输入两个具有高同步准确度的电脉冲到调制器中.通过这种方式可以实现具有高同步准确度的长短光脉冲的输出.研究结果表明:该方案下长短脉冲的同步准确度可小于3.5ps(rms).
Resumo:
GaInP/GaAs dual-junction solar cell with a conversion efficiency of 25.2% has been fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Quantum efficiencies of the solar cell were measured within a temperature range from 25 to 160A degrees C. The results indicate that the quantum efficiencies of the subcells increase slightly with the increasing temperature. And red-shift phenomena of absorption limit for all subcells are observed by increasing the cell's work temperature, which are consistent with the viewpoint of energy gap narrowing effect. The short-circuit current density temperature coefficients dJ (sc)/dT of GaInP subcell and GaAs subcell are determined to be 8.9 and 7.4 mu A/cm(2)/A degrees C from the quantum efficiency data, respectively. And the open-circuit cell voltage temperature coefficients dV (oc)/dT calculated based on a theoretical equation are -2.4 mV/A degrees C and -2.1 mV/A degrees C for GaInP subcell and GaAs subcell.
Resumo:
The GaInP/GaAs/Ge triple-junction tandem cells with a conversion efficiency of 27.1% were fabricated using metalorganic chemical vapor deposition (MOCVD) technique. Temperature dependence of the spectral response measurements of the GaInP/GaAs/Ge tandem cell was performed by a quantum efficiency system at temperatures ranging from 25A degrees C to 160A degrees C. The red-shift phenomena of the absorption limit for all subcells were observed with increasing temperature, which is dued to the energy gap narrowing with temperature. The short-circuit current densities (J (sc)) of GaInP, GaAs and Ge subcells at room temperature calculated based on the spectral response data were 12.9, 13.7 and 17 mA/cm(2), respectively. The temperature coefficient of J (sc) for the tandem cell was determined to be 8.9 mu A/(cm(2) center dot A degrees C), and the corresponding temperature coefficient of the open-circuit voltage deduced from the series-connected model was -6.27 mV/A degrees C.
Resumo:
Based on our experimental research on diphasic silicon films, the parameters such as absorption coefficient, mobility lifetime product and bandgap were estimated by means of effective-medium theory. And then computer simulation of a-Si: H/mu c-Si: H diphasic thin film solar cells was performed. It was shown that the more crystalline fraction in the diphasic silicon films, the higher short circuit density, the lower open-circuit voltage and the lower efficiency. From the spectral response, we can see that the response in long wave region was improved significantly with increasing crystalline fraction in the silicon films. Taking Lambertian back refraction into account, the diphasic silicon films with 40%-50% crystalline fraction was considered to be the best intrinsic layer for the bottom solar cell in micromorph tandem.
Resumo:
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7mA/cm(2), but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystal line silicon wafers with only conventional background impurities. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Intrinsic nanocrystalline silicon films (nc-Si:H) were prepared by plasma enhanced chemical vapor deposition (PECVD) method. Films' microstructures and characteristics were studied with Raman spectroscopy and Atom Force Microscope (AFM). The electronic conductivity of nc-Si:H films was found to be 4.9 x 10(0)Omega(-1) cm(-1), which was one order of magnitude higher than the reported 10(-3)-10(-1)Omega(-1)cm(-1). And PIN solar cells with nc-Si:H film as intrinsic thin-layer (ITO/n(+)-nc-Si:H/i-nc-Si:H/p-c-Si/Ag) were researched. The cell's performances were measured, the open-circuit voltage V-oc was 534.7 mV, short-circuit current I-sc was 49.24 mA (3 cm(2)) and fill factor FF was 0.4228. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic performances of nc-Si:H/c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (V-OC) and fill factors (FF) of these structured solar cells. Short circuit current density (J(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si:H buffer layers inserted into n(+)-nc-Si:H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As DeltaE(C) increases, degradation of VOC and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombination centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AM1.5,100mW/cm(2), 0.40-1.1mum) has been obtained with BSF structure, idealized light-trapping effect(R-F=0, R-B=1) and no interface states.